Properties

Base field \(\Q(\sqrt{35}) \)
Weight [2, 2]
Level norm 14
Level $[14, 14, w - 7]$
Label 2.2.140.1-14.1-b
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{35}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 35\); narrow class number \(4\) and class number \(2\).

Form

Weight [2, 2]
Level $[14, 14, w - 7]$
Label 2.2.140.1-14.1-b
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 36

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $-1$
5 $[5, 5, w]$ $\phantom{-}0$
7 $[7, 7, w]$ $\phantom{-}1$
9 $[9, 3, 3]$ $-2$
13 $[13, 13, w + 3]$ $-4$
13 $[13, 13, w + 10]$ $-4$
17 $[17, 17, w + 1]$ $\phantom{-}6$
17 $[17, 17, w + 16]$ $\phantom{-}6$
19 $[19, 19, w + 4]$ $\phantom{-}2$
19 $[19, 19, -w + 4]$ $\phantom{-}2$
23 $[23, 23, w + 9]$ $\phantom{-}0$
23 $[23, 23, w + 14]$ $\phantom{-}0$
29 $[29, 29, -w - 8]$ $-6$
29 $[29, 29, w - 8]$ $-6$
31 $[31, 31, -w - 2]$ $-4$
31 $[31, 31, w - 2]$ $-4$
43 $[43, 43, w + 11]$ $\phantom{-}8$
43 $[43, 43, w + 32]$ $\phantom{-}8$
59 $[59, 59, 2w - 9]$ $-6$
59 $[59, 59, -2w - 9]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $1$
7 $[7, 7, w]$ $-1$