Properties

Label 2.2.136.1-9.1-c
Base field \(\Q(\sqrt{34}) \)
Weight $[2, 2]$
Level norm $9$
Level $[9, 3, 3]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{34}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 34\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[9, 3, 3]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $48$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 6]$ $\phantom{-}1$
3 $[3, 3, w + 1]$ $-1$
3 $[3, 3, w + 2]$ $\phantom{-}1$
5 $[5, 5, w + 2]$ $\phantom{-}0$
5 $[5, 5, w + 3]$ $\phantom{-}0$
11 $[11, 11, w + 1]$ $-4$
11 $[11, 11, w + 10]$ $\phantom{-}4$
17 $[17, 17, -3w + 17]$ $-2$
29 $[29, 29, w + 11]$ $\phantom{-}0$
29 $[29, 29, w + 18]$ $\phantom{-}0$
37 $[37, 37, w + 16]$ $\phantom{-}8$
37 $[37, 37, w + 21]$ $-8$
47 $[47, 47, -w - 9]$ $-8$
47 $[47, 47, w - 9]$ $-8$
49 $[49, 7, -7]$ $-2$
61 $[61, 61, w + 20]$ $\phantom{-}8$
61 $[61, 61, w + 41]$ $-8$
89 $[89, 89, 2w - 15]$ $-10$
89 $[89, 89, -2w - 15]$ $-10$
103 $[103, 103, -14w + 81]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w + 1]$ $1$
$3$ $[3, 3, w + 2]$ $-1$