Properties

Base field \(\Q(\sqrt{34}) \)
Weight [2, 2]
Level norm 8
Level $[8, 4, 2w - 12]$
Label 2.2.136.1-8.1-b
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{34}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 34\); narrow class number \(4\) and class number \(2\).

Form

Weight [2, 2]
Level $[8, 4, 2w - 12]$
Label 2.2.136.1-8.1-b
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 16

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 6]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $\phantom{-}2$
3 $[3, 3, w + 2]$ $-2$
5 $[5, 5, w + 2]$ $\phantom{-}0$
5 $[5, 5, w + 3]$ $\phantom{-}0$
11 $[11, 11, w + 1]$ $\phantom{-}2$
11 $[11, 11, w + 10]$ $-2$
17 $[17, 17, -3w + 17]$ $-2$
29 $[29, 29, w + 11]$ $-8$
29 $[29, 29, w + 18]$ $\phantom{-}8$
37 $[37, 37, w + 16]$ $-8$
37 $[37, 37, w + 21]$ $\phantom{-}8$
47 $[47, 47, -w - 9]$ $-8$
47 $[47, 47, w - 9]$ $-8$
49 $[49, 7, -7]$ $\phantom{-}10$
61 $[61, 61, w + 20]$ $\phantom{-}8$
61 $[61, 61, w + 41]$ $-8$
89 $[89, 89, 2w - 15]$ $-14$
89 $[89, 89, -2w - 15]$ $-14$
103 $[103, 103, -14w + 81]$ $\phantom{-}8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w - 6]$ $-1$