Properties

Base field \(\Q(\sqrt{133}) \)
Weight [2, 2]
Level norm 28
Level $[28, 14, 6w - 38]$
Label 2.2.133.1-28.1-a
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{133}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 33\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[28, 14, 6w - 38]$
Label 2.2.133.1-28.1-a
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 50

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $-2$
3 $[3, 3, -w - 5]$ $-2$
4 $[4, 2, 2]$ $\phantom{-}1$
7 $[7, 7, 3w - 19]$ $\phantom{-}1$
11 $[11, 11, -2w - 11]$ $\phantom{-}0$
11 $[11, 11, -2w + 13]$ $\phantom{-}0$
13 $[13, 13, w + 4]$ $-4$
13 $[13, 13, -w + 5]$ $-4$
19 $[19, 19, 5w - 31]$ $\phantom{-}2$
23 $[23, 23, -w - 7]$ $\phantom{-}0$
23 $[23, 23, w - 8]$ $\phantom{-}0$
25 $[25, 5, -5]$ $-10$
31 $[31, 31, -w - 1]$ $-4$
31 $[31, 31, w - 2]$ $-4$
41 $[41, 41, 6w + 31]$ $\phantom{-}6$
41 $[41, 41, 6w - 37]$ $\phantom{-}6$
43 $[43, 43, -3w - 17]$ $\phantom{-}8$
43 $[43, 43, -3w + 20]$ $\phantom{-}8$
59 $[59, 59, 3w - 17]$ $-6$
59 $[59, 59, 3w + 14]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
7 $[7, 7, 3w - 19]$ $-1$