Properties

Label 2.2.133.1-16.1-c
Base field \(\Q(\sqrt{133}) \)
Weight $[2, 2]$
Level norm $16$
Level $[16, 4, 4]$
Dimension $8$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{133}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 33\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[16, 4, 4]$
Dimension: $8$
CM: no
Base change: no
Newspace dimension: $30$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{8} - 18x^{6} + 102x^{4} - 180x^{2} + 36\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $\phantom{-}e$
3 $[3, 3, -w - 5]$ $-\frac{1}{6}e^{5} + 2e^{3} - 6e$
4 $[4, 2, 2]$ $\phantom{-}0$
7 $[7, 7, 3w - 19]$ $\phantom{-}\frac{1}{6}e^{6} - 2e^{4} + 6e^{2} - 3$
11 $[11, 11, -2w - 11]$ $\phantom{-}\frac{1}{3}e^{6} - 4e^{4} + 11e^{2} - 1$
11 $[11, 11, -2w + 13]$ $\phantom{-}\frac{1}{6}e^{6} - 2e^{4} + 7e^{2} - 7$
13 $[13, 13, w + 4]$ $-\frac{1}{6}e^{7} + \frac{13}{6}e^{5} - 8e^{3} + 9e$
13 $[13, 13, -w + 5]$ $\phantom{-}\frac{1}{6}e^{7} - \frac{5}{2}e^{5} + 11e^{3} - 13e$
19 $[19, 19, 5w - 31]$ $-\frac{2}{3}e^{5} + 6e^{3} - 8e$
23 $[23, 23, -w - 7]$ $-e^{2} + 8$
23 $[23, 23, w - 8]$ $-\frac{1}{6}e^{6} + 2e^{4} - 5e^{2} + 2$
25 $[25, 5, -5]$ $\phantom{-}\frac{1}{6}e^{6} - 2e^{4} + 6e^{2} - 3$
31 $[31, 31, -w - 1]$ $-\frac{1}{2}e^{5} + 5e^{3} - 8e$
31 $[31, 31, w - 2]$ $-\frac{2}{3}e^{5} + 7e^{3} - 15e$
41 $[41, 41, 6w + 31]$ $-\frac{1}{6}e^{7} + \frac{17}{6}e^{5} - 14e^{3} + 18e$
41 $[41, 41, 6w - 37]$ $\phantom{-}\frac{1}{6}e^{7} - 2e^{5} + 7e^{3} - 11e$
43 $[43, 43, -3w - 17]$ $\phantom{-}\frac{1}{3}e^{6} - 4e^{4} + 13e^{2} - 7$
43 $[43, 43, -3w + 20]$ $\phantom{-}\frac{1}{2}e^{6} - 6e^{4} + 17e^{2} - 1$
59 $[59, 59, 3w - 17]$ $-\frac{4}{3}e^{5} + 14e^{3} - 32e$
59 $[59, 59, 3w + 14]$ $-\frac{2}{3}e^{5} + 6e^{3} - 4e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, 2]$ $1$