# Properties

 Base field $$\Q(\sqrt{30})$$ Weight [2, 2] Level norm 30 Level $[30, 30, w]$ Label 2.2.120.1-30.1-i Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{30})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 30$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[30, 30, w]$ Label 2.2.120.1-30.1-i Dimension 1 Is CM no Is base change yes Parent newspace dimension 44

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $-1$
3 $[3, 3, w]$ $\phantom{-}1$
5 $[5, 5, -w + 5]$ $-1$
7 $[7, 7, w + 3]$ $-4$
7 $[7, 7, w + 4]$ $-4$
13 $[13, 13, w + 2]$ $\phantom{-}2$
13 $[13, 13, w + 11]$ $\phantom{-}2$
17 $[17, 17, w + 8]$ $\phantom{-}6$
17 $[17, 17, w + 9]$ $\phantom{-}6$
19 $[19, 19, w + 7]$ $-4$
19 $[19, 19, -w + 7]$ $-4$
29 $[29, 29, -w - 1]$ $-6$
29 $[29, 29, w - 1]$ $-6$
37 $[37, 37, w + 17]$ $\phantom{-}2$
37 $[37, 37, w + 20]$ $\phantom{-}2$
71 $[71, 71, 2w - 7]$ $\phantom{-}0$
71 $[71, 71, -2w - 7]$ $\phantom{-}0$
83 $[83, 83, w + 14]$ $\phantom{-}12$
83 $[83, 83, w + 69]$ $\phantom{-}12$
101 $[101, 101, -7w + 37]$ $\phantom{-}18$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w]$ $1$
3 $[3, 3, w]$ $-1$
5 $[5, 5, -w + 5]$ $1$