# Properties

 Base field $$\Q(\sqrt{3})$$ Weight [2, 2] Level norm 1875 Level $[1875, 75, 25w]$ Label 2.2.12.1-1875.1-e Dimension 1 CM no Base change yes

# Learn more about

## Base field $$\Q(\sqrt{3})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[1875, 75, 25w]$ Label 2.2.12.1-1875.1-e Dimension 1 Is CM no Is base change yes Parent newspace dimension 102

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $-2$
3 $[3, 3, w]$ $\phantom{-}1$
11 $[11, 11, -2w + 1]$ $\phantom{-}2$
11 $[11, 11, 2w + 1]$ $\phantom{-}2$
13 $[13, 13, w + 4]$ $-1$
13 $[13, 13, -w + 4]$ $-1$
23 $[23, 23, -3w + 2]$ $-6$
23 $[23, 23, 3w + 2]$ $-6$
25 $[25, 5, 5]$ $\phantom{-}0$
37 $[37, 37, 2w - 7]$ $-2$
37 $[37, 37, -2w - 7]$ $-2$
47 $[47, 47, -4w - 1]$ $-2$
47 $[47, 47, 4w - 1]$ $-2$
49 $[49, 7, -7]$ $-5$
59 $[59, 59, 5w - 4]$ $-10$
59 $[59, 59, -5w - 4]$ $-10$
61 $[61, 61, -w - 8]$ $\phantom{-}7$
61 $[61, 61, w - 8]$ $\phantom{-}7$
71 $[71, 71, 5w - 2]$ $-8$
71 $[71, 71, -5w - 2]$ $-8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $-1$
25 $[25, 5, 5]$ $1$