# Properties

 Base field $$\Q(\sqrt{3})$$ Weight [2, 2] Level norm 121 Level $[121, 11, 11]$ Label 2.2.12.1-121.1-c Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{3})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 3$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[121, 11, 11]$ Label 2.2.12.1-121.1-c Dimension 1 Is CM no Is base change yes Parent newspace dimension 12

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $-2$
3 $[3, 3, w]$ $-1$
11 $[11, 11, -2w + 1]$ $\phantom{-}1$
11 $[11, 11, 2w + 1]$ $\phantom{-}1$
13 $[13, 13, w + 4]$ $\phantom{-}4$
13 $[13, 13, -w + 4]$ $\phantom{-}4$
23 $[23, 23, -3w + 2]$ $-1$
23 $[23, 23, 3w + 2]$ $-1$
25 $[25, 5, 5]$ $-9$
37 $[37, 37, 2w - 7]$ $\phantom{-}3$
37 $[37, 37, -2w - 7]$ $\phantom{-}3$
47 $[47, 47, -4w - 1]$ $\phantom{-}8$
47 $[47, 47, 4w - 1]$ $\phantom{-}8$
49 $[49, 7, -7]$ $-10$
59 $[59, 59, 5w - 4]$ $\phantom{-}5$
59 $[59, 59, -5w - 4]$ $\phantom{-}5$
61 $[61, 61, -w - 8]$ $\phantom{-}12$
61 $[61, 61, w - 8]$ $\phantom{-}12$
71 $[71, 71, 5w - 2]$ $-3$
71 $[71, 71, -5w - 2]$ $-3$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, -2w + 1]$ $-1$
11 $[11, 11, 2w + 1]$ $-1$