# Properties

 Base field $$\Q(\sqrt{113})$$ Weight [2, 2] Level norm 14 Level $[14, 14, 3w + 14]$ Label 2.2.113.1-14.1-i Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{113})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 28$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[14, 14, 3w + 14]$ Label 2.2.113.1-14.1-i Dimension 2 Is CM no Is base change no Parent newspace dimension 19

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2}$$ $$\mathstrut +\mathstrut 5x$$ $$\mathstrut +\mathstrut 2$$
Norm Prime Eigenvalue
2 $[2, 2, -w + 6]$ $-1$
2 $[2, 2, w + 5]$ $-1$
7 $[7, 7, 6w - 35]$ $\phantom{-}1$
7 $[7, 7, -6w - 29]$ $\phantom{-}e$
9 $[9, 3, 3]$ $\phantom{-}2e + 4$
11 $[11, 11, 4w + 19]$ $-2e - 6$
11 $[11, 11, 4w - 23]$ $\phantom{-}e + 2$
13 $[13, 13, -2w + 11]$ $-e + 2$
13 $[13, 13, 2w + 9]$ $-e - 4$
25 $[25, 5, -5]$ $-e$
31 $[31, 31, 2w - 13]$ $-6$
31 $[31, 31, -2w - 11]$ $\phantom{-}2e$
41 $[41, 41, -8w - 39]$ $\phantom{-}2e + 2$
41 $[41, 41, 8w - 47]$ $-e$
53 $[53, 53, -26w - 125]$ $-e + 2$
53 $[53, 53, 26w - 151]$ $-2$
61 $[61, 61, -14w + 81]$ $-3e$
61 $[61, 61, -14w - 67]$ $\phantom{-}e$
83 $[83, 83, 2w - 15]$ $-8e - 20$
83 $[83, 83, -2w - 13]$ $-2$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 6]$ $1$
7 $[7, 7, 6w - 35]$ $-1$