Properties

Base field \(\Q(\sqrt{113}) \)
Weight [2, 2]
Level norm 11
Level $[11, 11, 4w + 19]$
Label 2.2.113.1-11.1-c
Dimension 16
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{113}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 28\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[11, 11, 4w + 19]$
Label 2.2.113.1-11.1-c
Dimension 16
Is CM no
Is base change no
Parent newspace dimension 27

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{16} \) \(\mathstrut -\mathstrut 2x^{15} \) \(\mathstrut -\mathstrut 21x^{14} \) \(\mathstrut +\mathstrut 38x^{13} \) \(\mathstrut +\mathstrut 178x^{12} \) \(\mathstrut -\mathstrut 280x^{11} \) \(\mathstrut -\mathstrut 781x^{10} \) \(\mathstrut +\mathstrut 1012x^{9} \) \(\mathstrut +\mathstrut 1884x^{8} \) \(\mathstrut -\mathstrut 1880x^{7} \) \(\mathstrut -\mathstrut 2438x^{6} \) \(\mathstrut +\mathstrut 1731x^{5} \) \(\mathstrut +\mathstrut 1543x^{4} \) \(\mathstrut -\mathstrut 679x^{3} \) \(\mathstrut -\mathstrut 368x^{2} \) \(\mathstrut +\mathstrut 65x \) \(\mathstrut +\mathstrut 11\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 6]$ $...$
2 $[2, 2, w + 5]$ $\phantom{-}e$
7 $[7, 7, 6w - 35]$ $...$
7 $[7, 7, -6w - 29]$ $...$
9 $[9, 3, 3]$ $...$
11 $[11, 11, 4w + 19]$ $-1$
11 $[11, 11, 4w - 23]$ $...$
13 $[13, 13, -2w + 11]$ $...$
13 $[13, 13, 2w + 9]$ $...$
25 $[25, 5, -5]$ $...$
31 $[31, 31, 2w - 13]$ $...$
31 $[31, 31, -2w - 11]$ $...$
41 $[41, 41, -8w - 39]$ $...$
41 $[41, 41, 8w - 47]$ $...$
53 $[53, 53, -26w - 125]$ $...$
53 $[53, 53, 26w - 151]$ $...$
61 $[61, 61, -14w + 81]$ $...$
61 $[61, 61, -14w - 67]$ $...$
83 $[83, 83, 2w - 15]$ $...$
83 $[83, 83, -2w - 13]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, 4w + 19]$ $1$