# Properties

 Base field $$\Q(\sqrt{109})$$ Weight [2, 2] Level norm 9 Level $[9, 9, -2w - 9]$ Label 2.2.109.1-9.2-e Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{109})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 27$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[9, 9, -2w - 9]$ Label 2.2.109.1-9.2-e Dimension 2 Is CM no Is base change no Parent newspace dimension 10

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2}$$ $$\mathstrut -\mathstrut 7$$
Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $\phantom{-}0$
3 $[3, 3, w + 5]$ $\phantom{-}0$
4 $[4, 2, 2]$ $\phantom{-}e$
5 $[5, 5, -3w + 17]$ $-1$
5 $[5, 5, -3w - 14]$ $\phantom{-}e$
7 $[7, 7, w - 5]$ $-2$
7 $[7, 7, w + 4]$ $\phantom{-}4$
29 $[29, 29, -w - 7]$ $\phantom{-}9$
29 $[29, 29, -w + 8]$ $\phantom{-}3e$
31 $[31, 31, -5w + 28]$ $\phantom{-}2e$
31 $[31, 31, -5w - 23]$ $\phantom{-}2e$
43 $[43, 43, 6w + 29]$ $\phantom{-}2e$
43 $[43, 43, -6w + 35]$ $-4e$
61 $[61, 61, 3w - 19]$ $-1$
61 $[61, 61, -3w - 16]$ $-13$
71 $[71, 71, -7w - 34]$ $-2$
71 $[71, 71, 7w - 41]$ $-4e$
73 $[73, 73, 2w - 7]$ $\phantom{-}e$
73 $[73, 73, -2w - 5]$ $-5e$
83 $[83, 83, -w - 10]$ $\phantom{-}2$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $1$