Properties

Base field \(\Q(\sqrt{109}) \)
Weight [2, 2]
Level norm 7
Level $[7,7,-w - 4]$
Label 2.2.109.1-7.2-a
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{109}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 27\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[7,7,-w - 4]$
Label 2.2.109.1-7.2-a
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 13

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $\phantom{-}0$
3 $[3, 3, w + 5]$ $\phantom{-}0$
4 $[4, 2, 2]$ $-1$
5 $[5, 5, -3w + 17]$ $-4$
5 $[5, 5, -3w - 14]$ $\phantom{-}2$
7 $[7, 7, w - 5]$ $-2$
7 $[7, 7, w + 4]$ $-1$
29 $[29, 29, -w - 7]$ $\phantom{-}6$
29 $[29, 29, -w + 8]$ $-6$
31 $[31, 31, -5w + 28]$ $-8$
31 $[31, 31, -5w - 23]$ $\phantom{-}10$
43 $[43, 43, 6w + 29]$ $\phantom{-}10$
43 $[43, 43, -6w + 35]$ $\phantom{-}4$
61 $[61, 61, 3w - 19]$ $\phantom{-}14$
61 $[61, 61, -3w - 16]$ $\phantom{-}2$
71 $[71, 71, -7w - 34]$ $-8$
71 $[71, 71, 7w - 41]$ $-14$
73 $[73, 73, 2w - 7]$ $\phantom{-}14$
73 $[73, 73, -2w - 5]$ $\phantom{-}2$
83 $[83, 83, -w - 10]$ $\phantom{-}14$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
7 $[7,7,-w - 4]$ $1$