# Properties

 Base field $$\Q(\sqrt{109})$$ Weight [2, 2] Level norm 7 Level $[7, 7, w - 5]$ Label 2.2.109.1-7.1-b Dimension 6 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{109})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 27$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[7, 7, w - 5]$ Label 2.2.109.1-7.1-b Dimension 6 Is CM no Is base change no Parent newspace dimension 13

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{6}$$ $$\mathstrut -\mathstrut 2x^{5}$$ $$\mathstrut -\mathstrut 17x^{4}$$ $$\mathstrut +\mathstrut 30x^{3}$$ $$\mathstrut +\mathstrut 81x^{2}$$ $$\mathstrut -\mathstrut 87x$$ $$\mathstrut -\mathstrut 143$$
Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $-\frac{1}{5}e^{5} + \frac{17}{5}e^{3} + \frac{4}{5}e^{2} - \frac{68}{5}e - \frac{44}{5}$
3 $[3, 3, w + 5]$ $\phantom{-}e$
4 $[4, 2, 2]$ $\phantom{-}\frac{8}{5}e^{5} + e^{4} - \frac{121}{5}e^{3} - \frac{77}{5}e^{2} + \frac{414}{5}e + \frac{402}{5}$
5 $[5, 5, -3w + 17]$ $\phantom{-}\frac{9}{5}e^{5} + e^{4} - \frac{133}{5}e^{3} - \frac{76}{5}e^{2} + \frac{442}{5}e + \frac{406}{5}$
5 $[5, 5, -3w - 14]$ $\phantom{-}\frac{3}{5}e^{5} - \frac{46}{5}e^{3} - \frac{7}{5}e^{2} + \frac{154}{5}e + \frac{112}{5}$
7 $[7, 7, w - 5]$ $-1$
7 $[7, 7, w + 4]$ $\phantom{-}\frac{7}{5}e^{5} + e^{4} - \frac{104}{5}e^{3} - \frac{73}{5}e^{2} + \frac{346}{5}e + \frac{353}{5}$
29 $[29, 29, -w - 7]$ $\phantom{-}3e^{5} + 2e^{4} - 45e^{3} - 31e^{2} + 152e + 159$
29 $[29, 29, -w + 8]$ $\phantom{-}\frac{7}{5}e^{5} + 2e^{4} - \frac{104}{5}e^{3} - \frac{138}{5}e^{2} + \frac{361}{5}e + \frac{503}{5}$
31 $[31, 31, -5w + 28]$ $-3e^{5} - 3e^{4} + 44e^{3} + 41e^{2} - 148e - 166$
31 $[31, 31, -5w - 23]$ $-\frac{1}{5}e^{5} + \frac{17}{5}e^{3} + \frac{9}{5}e^{2} - \frac{63}{5}e - \frac{84}{5}$
43 $[43, 43, 6w + 29]$ $\phantom{-}e^{4} - 2e^{3} - 15e^{2} + 20e + 48$
43 $[43, 43, -6w + 35]$ $-\frac{9}{5}e^{5} - e^{4} + \frac{143}{5}e^{3} + \frac{101}{5}e^{2} - \frac{527}{5}e - \frac{566}{5}$
61 $[61, 61, 3w - 19]$ $-\frac{17}{5}e^{5} - e^{4} + \frac{254}{5}e^{3} + \frac{93}{5}e^{2} - \frac{836}{5}e - \frac{683}{5}$
61 $[61, 61, -3w - 16]$ $-\frac{27}{5}e^{5} - 4e^{4} + \frac{409}{5}e^{3} + \frac{308}{5}e^{2} - \frac{1421}{5}e - \frac{1503}{5}$
71 $[71, 71, -7w - 34]$ $-\frac{23}{5}e^{5} - e^{4} + \frac{346}{5}e^{3} + \frac{112}{5}e^{2} - \frac{1149}{5}e - \frac{917}{5}$
71 $[71, 71, 7w - 41]$ $\phantom{-}7e^{5} + 4e^{4} - 104e^{3} - 62e^{2} + 349e + 333$
73 $[73, 73, 2w - 7]$ $\phantom{-}\frac{17}{5}e^{5} + 2e^{4} - \frac{259}{5}e^{3} - \frac{163}{5}e^{2} + \frac{896}{5}e + \frac{868}{5}$
73 $[73, 73, -2w - 5]$ $\phantom{-}\frac{7}{5}e^{5} + 2e^{4} - \frac{104}{5}e^{3} - \frac{138}{5}e^{2} + \frac{351}{5}e + \frac{488}{5}$
83 $[83, 83, -w - 10]$ $\phantom{-}\frac{19}{5}e^{5} + 2e^{4} - \frac{293}{5}e^{3} - \frac{181}{5}e^{2} + \frac{1027}{5}e + \frac{1036}{5}$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
7 $[7, 7, w - 5]$ $1$