Properties

Base field \(\Q(\sqrt{109}) \)
Weight [2, 2]
Level norm 12
Level $[12,6,2w + 10]$
Label 2.2.109.1-12.2-a
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{109}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 27\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[12,6,2w + 10]$
Label 2.2.109.1-12.2-a
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 14

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $\phantom{-}1$
3 $[3, 3, w + 5]$ $\phantom{-}1$
4 $[4, 2, 2]$ $\phantom{-}1$
5 $[5, 5, -3w + 17]$ $\phantom{-}3$
5 $[5, 5, -3w - 14]$ $\phantom{-}0$
7 $[7, 7, w - 5]$ $-1$
7 $[7, 7, w + 4]$ $\phantom{-}2$
29 $[29, 29, -w - 7]$ $\phantom{-}0$
29 $[29, 29, -w + 8]$ $\phantom{-}9$
31 $[31, 31, -5w + 28]$ $-1$
31 $[31, 31, -5w - 23]$ $\phantom{-}2$
43 $[43, 43, 6w + 29]$ $\phantom{-}8$
43 $[43, 43, -6w + 35]$ $-4$
61 $[61, 61, 3w - 19]$ $\phantom{-}2$
61 $[61, 61, -3w - 16]$ $\phantom{-}11$
71 $[71, 71, -7w - 34]$ $\phantom{-}0$
71 $[71, 71, 7w - 41]$ $-9$
73 $[73, 73, 2w - 7]$ $-10$
73 $[73, 73, -2w - 5]$ $\phantom{-}8$
83 $[83, 83, -w - 10]$ $-12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3,3,w + 5]$ $-1$
4 $[4,2,2]$ $-1$