Properties

Base field \(\Q(\sqrt{109}) \)
Weight [2, 2]
Level norm 12
Level $[12, 6, -2w + 12]$
Label 2.2.109.1-12.1-g
Dimension 3
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{109}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 27\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[12, 6, -2w + 12]$
Label 2.2.109.1-12.1-g
Dimension 3
Is CM no
Is base change no
Parent newspace dimension 14

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{3} \) \(\mathstrut -\mathstrut 3x^{2} \) \(\mathstrut -\mathstrut 3x \) \(\mathstrut +\mathstrut 8\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $\phantom{-}1$
3 $[3, 3, w + 5]$ $\phantom{-}e$
4 $[4, 2, 2]$ $\phantom{-}1$
5 $[5, 5, -3w + 17]$ $-e^{2} + e + 3$
5 $[5, 5, -3w - 14]$ $\phantom{-}e - 1$
7 $[7, 7, w - 5]$ $-e$
7 $[7, 7, w + 4]$ $-e^{2} + 2e + 4$
29 $[29, 29, -w - 7]$ $\phantom{-}e^{2} - e - 9$
29 $[29, 29, -w + 8]$ $\phantom{-}2e^{2} - 3e - 5$
31 $[31, 31, -5w + 28]$ $\phantom{-}2e^{2} - 12$
31 $[31, 31, -5w - 23]$ $\phantom{-}2e$
43 $[43, 43, 6w + 29]$ $\phantom{-}e + 4$
43 $[43, 43, -6w + 35]$ $-3e + 8$
61 $[61, 61, 3w - 19]$ $-3e^{2} + 5e + 3$
61 $[61, 61, -3w - 16]$ $\phantom{-}3e^{2} - 7e - 9$
71 $[71, 71, -7w - 34]$ $\phantom{-}4e^{2} - 5e - 8$
71 $[71, 71, 7w - 41]$ $\phantom{-}12$
73 $[73, 73, 2w - 7]$ $\phantom{-}e^{2} - e - 13$
73 $[73, 73, -2w - 5]$ $-3e^{2} + e + 19$
83 $[83, 83, -w - 10]$ $-2e^{2} - 2e + 16$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $-1$
4 $[4, 2, 2]$ $-1$