Properties

 Base field $$\Q(\sqrt{109})$$ Weight [2, 2] Level norm 1 Level $[1, 1, 1]$ Label 2.2.109.1-1.1-a Dimension 1 CM no Base change yes

Related objects

Base field $$\Q(\sqrt{109})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 27$$; narrow class number $$1$$ and class number $$1$$.

Form

 Weight [2, 2] Level $[1, 1, 1]$ Label 2.2.109.1-1.1-a Dimension 1 Is CM no Is base change yes Parent newspace dimension 4

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 6]$ $\phantom{-}2$
3 $[3, 3, w + 5]$ $\phantom{-}2$
4 $[4, 2, 2]$ $\phantom{-}1$
5 $[5, 5, -3w + 17]$ $-3$
5 $[5, 5, -3w - 14]$ $-3$
7 $[7, 7, w - 5]$ $\phantom{-}2$
7 $[7, 7, w + 4]$ $\phantom{-}2$
29 $[29, 29, -w - 7]$ $-3$
29 $[29, 29, -w + 8]$ $-3$
31 $[31, 31, -5w + 28]$ $\phantom{-}10$
31 $[31, 31, -5w - 23]$ $\phantom{-}10$
43 $[43, 43, 6w + 29]$ $-2$
43 $[43, 43, -6w + 35]$ $-2$
61 $[61, 61, 3w - 19]$ $-7$
61 $[61, 61, -3w - 16]$ $-7$
71 $[71, 71, -7w - 34]$ $-6$
71 $[71, 71, 7w - 41]$ $-6$
73 $[73, 73, 2w - 7]$ $-5$
73 $[73, 73, -2w - 5]$ $-5$
83 $[83, 83, -w - 10]$ $\phantom{-}12$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is $$(1)$$.