Properties

Base field \(\Q(\sqrt{105}) \)
Weight [2, 2]
Level norm 28
Level $[28, 14, 2w + 6]$
Label 2.2.105.1-28.1-d
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{105}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 26\); narrow class number \(4\) and class number \(2\).

Form

Weight [2, 2]
Level $[28, 14, 2w + 6]$
Label 2.2.105.1-28.1-d
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 36

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $-1$
2 $[2, 2, w + 1]$ $-1$
3 $[3, 3, w + 1]$ $-2$
5 $[5, 5, 2w - 11]$ $\phantom{-}0$
7 $[7, 7, w + 3]$ $\phantom{-}1$
13 $[13, 13, w]$ $-4$
13 $[13, 13, w + 12]$ $-4$
23 $[23, 23, w + 8]$ $\phantom{-}0$
23 $[23, 23, w + 14]$ $\phantom{-}0$
41 $[41, 41, 2w - 9]$ $\phantom{-}6$
41 $[41, 41, -2w - 7]$ $\phantom{-}6$
53 $[53, 53, w + 11]$ $\phantom{-}6$
53 $[53, 53, w + 41]$ $\phantom{-}6$
59 $[59, 59, 4w + 17]$ $-6$
59 $[59, 59, 4w - 21]$ $-6$
73 $[73, 73, w + 27]$ $\phantom{-}2$
73 $[73, 73, w + 45]$ $\phantom{-}2$
79 $[79, 79, -6w - 29]$ $\phantom{-}8$
79 $[79, 79, 6w - 35]$ $\phantom{-}8$
89 $[89, 89, 2w - 5]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w]$ $1$
2 $[2, 2, w + 1]$ $1$
7 $[7, 7, w + 3]$ $-1$