Learn more about

The database currently contains information on $S_k(\Gamma_0(N))$ for $(k,N)$ in the ranges $[2,12]\times [1,100]$ and $[2,40]\times [1,25]$, and on $S_k(\Gamma_1(N))$ in the ranges $[2,10]\times [1,50]$ and $[2,20]\times [1,16]$. More data is being added continually.

Switch to \(\Gamma_0(N)\)

Browse holomorphic newforms for \(\Gamma_1(N)\)

The table below gives the dimensions of the space of holomorphic newforms of integral weight for \(\Gamma_1(N)\) .
Weight Level \(N\)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 0 0 0 0 0 0 0 0 0 0 1 0 2 1 1 2 5 2 7 3 5 4 12 5
3 0 0 0 0 0 0 1 1 2 2 5 3 8 4 8 7 16 6 21 10 18 10 33 12
4 0 0 0 0 1 1 3 3 5 3 10 5 15 6 14 11 28 7 36 17 30 15 55 17
5 0 0 0 1 2 2 5 3 8 4 15 5 22 8 20 16 40 8 51 22 42 20 77 26
6 0 0 1 1 3 1 7 5 9 5 20 8 29 10 24 20 52 13 66 29 52 25 99 31
7 0 0 1 2 4 2 9 5 12 6 25 8 36 12 30 25 64 14 81 34 64 30 121 40
8 0 1 1 0 5 1 11 8 15 5 30 14 43 12 36 29 76 16 96 45 76 33 143 43
9 0 0 2 3 6 2 13 7 16 8 35 11 50 16 40 34 88 20 111 46 86 40 165 54
10 0 1 2 1 7 1 15 10 19 7 40 17 57 16 46 38 100 22 126 57 98 43 187 57
11 0 0 2 4 8 4 17 9 22 10 45 13 64 20 52 43 112 22 141 58 110 50 209 68
12 1 0 1 1 7 3 17 13 24 11 48 22 69 22 60 47 122 27 154 71 124 55 229 69
The dimension is clickable whenever the Hecke orbits are stored for that space.

Change the range covered by the table

Level range:
Weight range:
Group: \(\Gamma_0(N)\)  \(\Gamma_1(N)\)

Find a specific cusp form from the database

Search by label of a form, or of a space of forms
e.g. 1.12.1.a or 55.11.54