Properties

Label 2020.1.d.d
Level $2020$
Weight $1$
Character orbit 2020.d
Analytic conductor $1.008$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
RM discriminant 505
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2020,1,Mod(2019,2020)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2020, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2020.2019");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2020 = 2^{2} \cdot 5 \cdot 101 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2020.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00811132552\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.816080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8} q^{2} + (\zeta_{8}^{3} + \zeta_{8}) q^{3} + \zeta_{8}^{2} q^{4} - q^{5} + ( - \zeta_{8}^{2} + 1) q^{6} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{7} - \zeta_{8}^{3} q^{8} - q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{8} q^{2} + (\zeta_{8}^{3} + \zeta_{8}) q^{3} + \zeta_{8}^{2} q^{4} - q^{5} + ( - \zeta_{8}^{2} + 1) q^{6} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{7} - \zeta_{8}^{3} q^{8} - q^{9} + \zeta_{8} q^{10} + (\zeta_{8}^{3} - \zeta_{8}) q^{12} + (\zeta_{8}^{2} - 1) q^{14} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{15} - q^{16} + \zeta_{8} q^{18} + \zeta_{8}^{2} q^{19} - \zeta_{8}^{2} q^{20} + (\zeta_{8}^{2} + 2) q^{21} + (\zeta_{8}^{2} + 1) q^{24} + q^{25} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{28} + (\zeta_{8}^{2} - 1) q^{30} + \zeta_{8}^{2} q^{31} + \zeta_{8} q^{32} + (\zeta_{8}^{3} + \zeta_{8}) q^{35} - \zeta_{8}^{2} q^{36} - 2 \zeta_{8}^{3} q^{38} + \zeta_{8}^{3} q^{40} - \zeta_{8} q^{42} + q^{45} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{48} - q^{49} - \zeta_{8} q^{50} + (\zeta_{8}^{3} - \zeta_{8}) q^{53} + ( - \zeta_{8}^{2} - 1) q^{56} + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{57} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{60} - 2 \zeta_{8}^{3} q^{62} + (\zeta_{8}^{3} + \zeta_{8}) q^{63} - \zeta_{8}^{2} q^{64} + (\zeta_{8}^{3} + \zeta_{8}) q^{67} + ( - \zeta_{8}^{2} + 1) q^{70} + \zeta_{8}^{3} q^{72} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{73} + (\zeta_{8}^{3} + \zeta_{8}) q^{75} - 2 q^{76} + q^{80} - q^{81} + (\zeta_{8}^{3} + \zeta_{8}) q^{83} + \zeta_{8}^{2} q^{84} - \zeta_{8} q^{90} + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{93} - 2 \zeta_{8}^{2} q^{95} + (\zeta_{8}^{2} - 1) q^{96} + \zeta_{8} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 4 q^{6} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{5} + 4 q^{6} - 4 q^{9} - 4 q^{14} - 4 q^{16} + 8 q^{21} + 4 q^{24} + 4 q^{25} - 4 q^{30} + 4 q^{45} - 4 q^{49} - 4 q^{56} + 4 q^{70} - 8 q^{76} + 4 q^{80} - 4 q^{81} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2020\mathbb{Z}\right)^\times\).

\(n\) \(1011\) \(1617\) \(1921\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2019.1
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 0.707107i 1.41421i 1.00000i −1.00000 1.00000 1.00000i 1.41421i 0.707107 0.707107i −1.00000 0.707107 + 0.707107i
2019.2 −0.707107 + 0.707107i 1.41421i 1.00000i −1.00000 1.00000 + 1.00000i 1.41421i 0.707107 + 0.707107i −1.00000 0.707107 0.707107i
2019.3 0.707107 0.707107i 1.41421i 1.00000i −1.00000 1.00000 + 1.00000i 1.41421i −0.707107 0.707107i −1.00000 −0.707107 + 0.707107i
2019.4 0.707107 + 0.707107i 1.41421i 1.00000i −1.00000 1.00000 1.00000i 1.41421i −0.707107 + 0.707107i −1.00000 −0.707107 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
505.d even 2 1 RM by \(\Q(\sqrt{505}) \)
4.b odd 2 1 inner
5.b even 2 1 inner
20.d odd 2 1 inner
101.b even 2 1 inner
404.d odd 2 1 inner
2020.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2020.1.d.d 4
4.b odd 2 1 inner 2020.1.d.d 4
5.b even 2 1 inner 2020.1.d.d 4
20.d odd 2 1 inner 2020.1.d.d 4
101.b even 2 1 inner 2020.1.d.d 4
404.d odd 2 1 inner 2020.1.d.d 4
505.d even 2 1 RM 2020.1.d.d 4
2020.d odd 2 1 inner 2020.1.d.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2020.1.d.d 4 1.a even 1 1 trivial
2020.1.d.d 4 4.b odd 2 1 inner
2020.1.d.d 4 5.b even 2 1 inner
2020.1.d.d 4 20.d odd 2 1 inner
2020.1.d.d 4 101.b even 2 1 inner
2020.1.d.d 4 404.d odd 2 1 inner
2020.1.d.d 4 505.d even 2 1 RM
2020.1.d.d 4 2020.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2020, [\chi])\):

\( T_{3}^{2} + 2 \) Copy content Toggle raw display
\( T_{53}^{2} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less