Properties

Label 9450.2.a.eh
Level 9450
Weight 2
Character orbit 9450.a
Self dual Yes
Analytic conductor 75.459
Analytic rank 1
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 9450 = 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 9450.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(75.4586299101\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\)  \(=\)  \( q\) \(- q^{2}\) \(+ q^{4}\) \(+ q^{7}\) \(- q^{8}\) \(+O(q^{10})\) \( q\) \(- q^{2}\) \(+ q^{4}\) \(+ q^{7}\) \(- q^{8}\) \( -2 q^{11} \) \( + ( 1 - \beta ) q^{13} \) \(- q^{14}\) \(+ q^{16}\) \( + ( -1 + 2 \beta ) q^{17} \) \( + 3 q^{19} \) \( + 2 q^{22} \) \( + ( 2 + \beta ) q^{23} \) \( + ( -1 + \beta ) q^{26} \) \(+ q^{28}\) \( + ( -5 - \beta ) q^{29} \) \( + 2 \beta q^{31} \) \(- q^{32}\) \( + ( 1 - 2 \beta ) q^{34} \) \( + ( -2 - 3 \beta ) q^{37} \) \( -3 q^{38} \) \( -4 q^{41} \) \( - \beta q^{43} \) \( -2 q^{44} \) \( + ( -2 - \beta ) q^{46} \) \( + ( 1 - 3 \beta ) q^{47} \) \(+ q^{49}\) \( + ( 1 - \beta ) q^{52} \) \( + ( -3 - \beta ) q^{53} \) \(- q^{56}\) \( + ( 5 + \beta ) q^{58} \) \( + ( -6 - 2 \beta ) q^{59} \) \( + ( -7 - \beta ) q^{61} \) \( -2 \beta q^{62} \) \(+ q^{64}\) \( + ( 6 + 3 \beta ) q^{67} \) \( + ( -1 + 2 \beta ) q^{68} \) \( + ( 4 - 2 \beta ) q^{71} \) \( + ( 2 + 2 \beta ) q^{73} \) \( + ( 2 + 3 \beta ) q^{74} \) \( + 3 q^{76} \) \( -2 q^{77} \) \( + ( -5 + 3 \beta ) q^{79} \) \( + 4 q^{82} \) \( + \beta q^{83} \) \( + \beta q^{86} \) \( + 2 q^{88} \) \( -5 q^{89} \) \( + ( 1 - \beta ) q^{91} \) \( + ( 2 + \beta ) q^{92} \) \( + ( -1 + 3 \beta ) q^{94} \) \( + ( -2 + 3 \beta ) q^{97} \) \(- q^{98}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\)  \(=\)  \(2q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 2q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut +\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 2q^{8} \) \(\mathstrut -\mathstrut 4q^{11} \) \(\mathstrut +\mathstrut 2q^{13} \) \(\mathstrut -\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 2q^{17} \) \(\mathstrut +\mathstrut 6q^{19} \) \(\mathstrut +\mathstrut 4q^{22} \) \(\mathstrut +\mathstrut 4q^{23} \) \(\mathstrut -\mathstrut 2q^{26} \) \(\mathstrut +\mathstrut 2q^{28} \) \(\mathstrut -\mathstrut 10q^{29} \) \(\mathstrut -\mathstrut 2q^{32} \) \(\mathstrut +\mathstrut 2q^{34} \) \(\mathstrut -\mathstrut 4q^{37} \) \(\mathstrut -\mathstrut 6q^{38} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut -\mathstrut 4q^{44} \) \(\mathstrut -\mathstrut 4q^{46} \) \(\mathstrut +\mathstrut 2q^{47} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 2q^{52} \) \(\mathstrut -\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 2q^{56} \) \(\mathstrut +\mathstrut 10q^{58} \) \(\mathstrut -\mathstrut 12q^{59} \) \(\mathstrut -\mathstrut 14q^{61} \) \(\mathstrut +\mathstrut 2q^{64} \) \(\mathstrut +\mathstrut 12q^{67} \) \(\mathstrut -\mathstrut 2q^{68} \) \(\mathstrut +\mathstrut 8q^{71} \) \(\mathstrut +\mathstrut 4q^{73} \) \(\mathstrut +\mathstrut 4q^{74} \) \(\mathstrut +\mathstrut 6q^{76} \) \(\mathstrut -\mathstrut 4q^{77} \) \(\mathstrut -\mathstrut 10q^{79} \) \(\mathstrut +\mathstrut 8q^{82} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut -\mathstrut 10q^{89} \) \(\mathstrut +\mathstrut 2q^{91} \) \(\mathstrut +\mathstrut 4q^{92} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 4q^{97} \) \(\mathstrut -\mathstrut 2q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.16228
−3.16228
−1.00000 0 1.00000 0 0 1.00000 −1.00000 0 0
1.2 −1.00000 0 1.00000 0 0 1.00000 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9450))\):

\(T_{11} \) \(\mathstrut +\mathstrut 2 \)
\(T_{13}^{2} \) \(\mathstrut -\mathstrut 2 T_{13} \) \(\mathstrut -\mathstrut 9 \)
\(T_{17}^{2} \) \(\mathstrut +\mathstrut 2 T_{17} \) \(\mathstrut -\mathstrut 39 \)
\(T_{19} \) \(\mathstrut -\mathstrut 3 \)