Properties

Label 9450.2.a.bh.1.1
Level 9450
Weight 2
Character 9450.1
Self dual Yes
Analytic conductor 75.459
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 9450 = 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 9450.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(75.4586299101\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 9450.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(-1.00000 q^{2}\) \(+1.00000 q^{4}\) \(+1.00000 q^{7}\) \(-1.00000 q^{8}\) \(+O(q^{10})\) \(q\)\(-1.00000 q^{2}\) \(+1.00000 q^{4}\) \(+1.00000 q^{7}\) \(-1.00000 q^{8}\) \(-2.00000 q^{11}\) \(+3.00000 q^{13}\) \(-1.00000 q^{14}\) \(+1.00000 q^{16}\) \(+1.00000 q^{17}\) \(+2.00000 q^{22}\) \(+3.00000 q^{23}\) \(-3.00000 q^{26}\) \(+1.00000 q^{28}\) \(-3.00000 q^{29}\) \(-1.00000 q^{31}\) \(-1.00000 q^{32}\) \(-1.00000 q^{34}\) \(+4.00000 q^{37}\) \(-10.0000 q^{41}\) \(-1.00000 q^{43}\) \(-2.00000 q^{44}\) \(-3.00000 q^{46}\) \(+10.0000 q^{47}\) \(+1.00000 q^{49}\) \(+3.00000 q^{52}\) \(-1.00000 q^{53}\) \(-1.00000 q^{56}\) \(+3.00000 q^{58}\) \(-5.00000 q^{59}\) \(+10.0000 q^{61}\) \(+1.00000 q^{62}\) \(+1.00000 q^{64}\) \(+3.00000 q^{67}\) \(+1.00000 q^{68}\) \(+5.00000 q^{71}\) \(+10.0000 q^{73}\) \(-4.00000 q^{74}\) \(-2.00000 q^{77}\) \(+4.00000 q^{79}\) \(+10.0000 q^{82}\) \(+4.00000 q^{83}\) \(+1.00000 q^{86}\) \(+2.00000 q^{88}\) \(+1.00000 q^{89}\) \(+3.00000 q^{91}\) \(+3.00000 q^{92}\) \(-10.0000 q^{94}\) \(-2.00000 q^{97}\) \(-1.00000 q^{98}\) \(+O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 3.00000 0.832050 0.416025 0.909353i \(-0.363423\pi\)
0.416025 + 0.909353i \(0.363423\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536 0.121268 0.992620i \(-0.461304\pi\)
0.121268 + 0.992620i \(0.461304\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −3.00000 −0.588348
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) −3.00000 −0.442326
\(47\) 10.0000 1.45865 0.729325 0.684167i \(-0.239834\pi\)
0.729325 + 0.684167i \(0.239834\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 3.00000 0.416025
\(53\) −1.00000 −0.137361 −0.0686803 0.997639i \(-0.521879\pi\)
−0.0686803 + 0.997639i \(0.521879\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 3.00000 0.393919
\(59\) −5.00000 −0.650945 −0.325472 0.945552i \(-0.605523\pi\)
−0.325472 + 0.945552i \(0.605523\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 1.00000 0.127000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 3.00000 0.366508 0.183254 0.983066i \(-0.441337\pi\)
0.183254 + 0.983066i \(0.441337\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 10.0000 1.10432
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.00000 0.107833
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 3.00000 0.314485
\(92\) 3.00000 0.312772
\(93\) 0 0
\(94\) −10.0000 −1.03142
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) −7.00000 −0.689730 −0.344865 0.938652i \(-0.612075\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) −3.00000 −0.294174
\(105\) 0 0
\(106\) 1.00000 0.0971286
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) 5.00000 0.460287
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) −1.00000 −0.0898027
\(125\) 0 0
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.00000 −0.259161
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.00000 −0.419591
\(143\) −6.00000 −0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 4.00000 0.328798
\(149\) 9.00000 0.737309 0.368654 0.929567i \(-0.379819\pi\)
0.368654 + 0.929567i \(0.379819\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 2.00000 0.161165
\(155\) 0 0
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) −4.00000 −0.318223
\(159\) 0 0
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) 7.00000 0.548282 0.274141 0.961689i \(-0.411606\pi\)
0.274141 + 0.961689i \(0.411606\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) −1.00000 −0.0749532
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 19.0000 1.41226 0.706129 0.708083i \(-0.250440\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) −3.00000 −0.222375
\(183\) 0 0
\(184\) −3.00000 −0.221163
\(185\) 0 0
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) 10.0000 0.729325
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −11.0000 −0.791797 −0.395899 0.918294i \(-0.629567\pi\)
−0.395899 + 0.918294i \(0.629567\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) 0 0
\(199\) 17.0000 1.20510 0.602549 0.798082i \(-0.294152\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 12.0000 0.844317
\(203\) −3.00000 −0.210559
\(204\) 0 0
\(205\) 0 0
\(206\) 7.00000 0.487713
\(207\) 0 0
\(208\) 3.00000 0.208013
\(209\) 0 0
\(210\) 0 0
\(211\) 19.0000 1.30801 0.654007 0.756489i \(-0.273087\pi\)
0.654007 + 0.756489i \(0.273087\pi\)
\(212\) −1.00000 −0.0686803
\(213\) 0 0
\(214\) 6.00000 0.410152
\(215\) 0 0
\(216\) 0 0
\(217\) −1.00000 −0.0678844
\(218\) −6.00000 −0.406371
\(219\) 0 0
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) 19.0000 1.26107 0.630537 0.776159i \(-0.282835\pi\)
0.630537 + 0.776159i \(0.282835\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5.00000 −0.325472
\(237\) 0 0
\(238\) −1.00000 −0.0648204
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 1.00000 0.0635001
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) 7.00000 0.432461
\(263\) −11.0000 −0.678289 −0.339145 0.940734i \(-0.610138\pi\)
−0.339145 + 0.940734i \(0.610138\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 3.00000 0.183254
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 15.0000 0.911185 0.455593 0.890188i \(-0.349427\pi\)
0.455593 + 0.890188i \(0.349427\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) 12.0000 0.721010 0.360505 0.932757i \(-0.382604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(278\) 8.00000 0.479808
\(279\) 0 0
\(280\) 0 0
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 0 0
\(283\) 22.0000 1.30776 0.653882 0.756596i \(-0.273139\pi\)
0.653882 + 0.756596i \(0.273139\pi\)
\(284\) 5.00000 0.296695
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) −10.0000 −0.590281
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 0 0
\(292\) 10.0000 0.585206
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) −9.00000 −0.521356
\(299\) 9.00000 0.520483
\(300\) 0 0
\(301\) −1.00000 −0.0576390
\(302\) −20.0000 −1.15087
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) −2.00000 −0.113961
\(309\) 0 0
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) −20.0000 −1.13047 −0.565233 0.824931i \(-0.691214\pi\)
−0.565233 + 0.824931i \(0.691214\pi\)
\(314\) −17.0000 −0.959366
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) −3.00000 −0.167183
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −7.00000 −0.387694
\(327\) 0 0
\(328\) 10.0000 0.552158
\(329\) 10.0000 0.551318
\(330\) 0 0
\(331\) 13.0000 0.714545 0.357272 0.934000i \(-0.383707\pi\)
0.357272 + 0.934000i \(0.383707\pi\)
\(332\) 4.00000 0.219529
\(333\) 0 0
\(334\) −18.0000 −0.984916
\(335\) 0 0
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 4.00000 0.217571
\(339\) 0 0
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 1.00000 0.0539164
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 14.0000 0.751559 0.375780 0.926709i \(-0.377375\pi\)
0.375780 + 0.926709i \(0.377375\pi\)
\(348\) 0 0
\(349\) 1.00000 0.0535288 0.0267644 0.999642i \(-0.491480\pi\)
0.0267644 + 0.999642i \(0.491480\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) −21.0000 −1.11772 −0.558859 0.829263i \(-0.688761\pi\)
−0.558859 + 0.829263i \(0.688761\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.00000 0.0529999
\(357\) 0 0
\(358\) 0 0
\(359\) 29.0000 1.53056 0.765281 0.643697i \(-0.222600\pi\)
0.765281 + 0.643697i \(0.222600\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −19.0000 −0.998618
\(363\) 0 0
\(364\) 3.00000 0.157243
\(365\) 0 0
\(366\) 0 0
\(367\) 23.0000 1.20059 0.600295 0.799779i \(-0.295050\pi\)
0.600295 + 0.799779i \(0.295050\pi\)
\(368\) 3.00000 0.156386
\(369\) 0 0
\(370\) 0 0
\(371\) −1.00000 −0.0519174
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) −10.0000 −0.515711
\(377\) −9.00000 −0.463524
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11.0000 0.559885
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 3.00000 0.151717
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) 0 0
\(396\) 0 0
\(397\) 38.0000 1.90717 0.953583 0.301131i \(-0.0973643\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) −17.0000 −0.852133
\(399\) 0 0
\(400\) 0 0
\(401\) −14.0000 −0.699127 −0.349563 0.936913i \(-0.613670\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(402\) 0 0
\(403\) −3.00000 −0.149441
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) 3.00000 0.148888
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −7.00000 −0.344865
\(413\) −5.00000 −0.246034
\(414\) 0 0
\(415\) 0 0
\(416\) −3.00000 −0.147087
\(417\) 0 0
\(418\) 0 0
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) −19.0000 −0.924906
\(423\) 0 0
\(424\) 1.00000 0.0485643
\(425\) 0 0
\(426\) 0 0
\(427\) 10.0000 0.483934
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) 4.00000 0.192228 0.0961139 0.995370i \(-0.469359\pi\)
0.0961139 + 0.995370i \(0.469359\pi\)
\(434\) 1.00000 0.0480015
\(435\) 0 0
\(436\) 6.00000 0.287348
\(437\) 0 0
\(438\) 0 0
\(439\) 13.0000 0.620456 0.310228 0.950662i \(-0.399595\pi\)
0.310228 + 0.950662i \(0.399595\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.00000 −0.142695
\(443\) −40.0000 −1.90046 −0.950229 0.311553i \(-0.899151\pi\)
−0.950229 + 0.311553i \(0.899151\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) −2.00000 −0.0940721
\(453\) 0 0
\(454\) −19.0000 −0.891714
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 0.514558 0.257279 0.966337i \(-0.417174\pi\)
0.257279 + 0.966337i \(0.417174\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) 0 0
\(461\) −38.0000 −1.76984 −0.884918 0.465746i \(-0.845786\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) 3.00000 0.138527
\(470\) 0 0
\(471\) 0 0
\(472\) 5.00000 0.230144
\(473\) 2.00000 0.0919601
\(474\) 0 0
\(475\) 0 0
\(476\) 1.00000 0.0458349
\(477\) 0 0
\(478\) 8.00000 0.365911
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) −4.00000 −0.182195
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) 34.0000 1.54069 0.770344 0.637629i \(-0.220085\pi\)
0.770344 + 0.637629i \(0.220085\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 0 0
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) −3.00000 −0.135113
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) 5.00000 0.224281
\(498\) 0 0
\(499\) −36.0000 −1.61158 −0.805791 0.592200i \(-0.798259\pi\)
−0.805791 + 0.592200i \(0.798259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 30.0000 1.33763 0.668817 0.743427i \(-0.266801\pi\)
0.668817 + 0.743427i \(0.266801\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6.00000 0.266733
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) 16.0000 0.709188 0.354594 0.935020i \(-0.384619\pi\)
0.354594 + 0.935020i \(0.384619\pi\)
\(510\) 0 0
\(511\) 10.0000 0.442374
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 14.0000 0.617514
\(515\) 0 0
\(516\) 0 0
\(517\) −20.0000 −0.879599
\(518\) −4.00000 −0.175750
\(519\) 0 0
\(520\) 0 0
\(521\) 5.00000 0.219054 0.109527 0.993984i \(-0.465066\pi\)
0.109527 + 0.993984i \(0.465066\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) −7.00000 −0.305796
\(525\) 0 0
\(526\) 11.0000 0.479623
\(527\) −1.00000 −0.0435607
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −30.0000 −1.29944
\(534\) 0 0
\(535\) 0 0
\(536\) −3.00000 −0.129580
\(537\) 0 0
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) −15.0000 −0.644305
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 18.0000 0.768922
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) −12.0000 −0.509831
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 17.0000 0.720313 0.360157 0.932892i \(-0.382723\pi\)
0.360157 + 0.932892i \(0.382723\pi\)
\(558\) 0 0
\(559\) −3.00000 −0.126886
\(560\) 0 0
\(561\) 0 0
\(562\) −8.00000 −0.337460
\(563\) 19.0000 0.800755 0.400377 0.916350i \(-0.368879\pi\)
0.400377 + 0.916350i \(0.368879\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −22.0000 −0.924729
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) −3.00000 −0.125546 −0.0627730 0.998028i \(-0.519994\pi\)
−0.0627730 + 0.998028i \(0.519994\pi\)
\(572\) −6.00000 −0.250873
\(573\) 0 0
\(574\) 10.0000 0.417392
\(575\) 0 0
\(576\) 0 0
\(577\) 8.00000 0.333044 0.166522 0.986038i \(-0.446746\pi\)
0.166522 + 0.986038i \(0.446746\pi\)
\(578\) 16.0000 0.665512
\(579\) 0 0
\(580\) 0 0
\(581\) 4.00000 0.165948
\(582\) 0 0
\(583\) 2.00000 0.0828315
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) −14.0000 −0.578335
\(587\) 7.00000 0.288921 0.144460 0.989511i \(-0.453855\pi\)
0.144460 + 0.989511i \(0.453855\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 4.00000 0.164399
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.00000 0.368654
\(597\) 0 0
\(598\) −9.00000 −0.368037
\(599\) −15.0000 −0.612883 −0.306442 0.951889i \(-0.599138\pi\)
−0.306442 + 0.951889i \(0.599138\pi\)
\(600\) 0 0
\(601\) 36.0000 1.46847 0.734235 0.678895i \(-0.237541\pi\)
0.734235 + 0.678895i \(0.237541\pi\)
\(602\) 1.00000 0.0407570
\(603\) 0 0
\(604\) 20.0000 0.813788
\(605\) 0 0
\(606\) 0 0
\(607\) −1.00000 −0.0405887 −0.0202944 0.999794i \(-0.506460\pi\)
−0.0202944 + 0.999794i \(0.506460\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 30.0000 1.21367
\(612\) 0 0
\(613\) 36.0000 1.45403 0.727013 0.686624i \(-0.240908\pi\)
0.727013 + 0.686624i \(0.240908\pi\)
\(614\) 4.00000 0.161427
\(615\) 0 0
\(616\) 2.00000 0.0805823
\(617\) 10.0000 0.402585 0.201292 0.979531i \(-0.435486\pi\)
0.201292 + 0.979531i \(0.435486\pi\)
\(618\) 0 0
\(619\) −22.0000 −0.884255 −0.442127 0.896952i \(-0.645776\pi\)
−0.442127 + 0.896952i \(0.645776\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −6.00000 −0.240578
\(623\) 1.00000 0.0400642
\(624\) 0 0
\(625\) 0 0
\(626\) 20.0000 0.799361
\(627\) 0 0
\(628\) 17.0000 0.678374
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) −4.00000 −0.159111
\(633\) 0 0
\(634\) −2.00000 −0.0794301
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000 0.118864
\(638\) −6.00000 −0.237542
\(639\) 0 0
\(640\) 0 0
\(641\) −46.0000 −1.81689 −0.908445 0.418004i \(-0.862730\pi\)
−0.908445 + 0.418004i \(0.862730\pi\)
\(642\) 0 0
\(643\) 14.0000 0.552106 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(644\) 3.00000 0.118217
\(645\) 0 0
\(646\) 0 0
\(647\) 2.00000 0.0786281 0.0393141 0.999227i \(-0.487483\pi\)
0.0393141 + 0.999227i \(0.487483\pi\)
\(648\) 0 0
\(649\) 10.0000 0.392534
\(650\) 0 0
\(651\) 0 0
\(652\) 7.00000 0.274141
\(653\) 7.00000 0.273931 0.136966 0.990576i \(-0.456265\pi\)
0.136966 + 0.990576i \(0.456265\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −10.0000 −0.390434
\(657\) 0 0
\(658\) −10.0000 −0.389841
\(659\) 34.0000 1.32445 0.662226 0.749304i \(-0.269612\pi\)
0.662226 + 0.749304i \(0.269612\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) −13.0000 −0.505259
\(663\) 0 0
\(664\) −4.00000 −0.155230
\(665\) 0 0
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 18.0000 0.696441
\(669\) 0 0
\(670\) 0 0
\(671\) −20.0000 −0.772091
\(672\) 0 0
\(673\) 35.0000 1.34915 0.674575 0.738206i \(-0.264327\pi\)
0.674575 + 0.738206i \(0.264327\pi\)
\(674\) −23.0000 −0.885927
\(675\) 0 0
\(676\) −4.00000 −0.153846
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 0 0
\(682\) −2.00000 −0.0765840
\(683\) 22.0000 0.841807 0.420903 0.907106i \(-0.361713\pi\)
0.420903 + 0.907106i \(0.361713\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −1.00000 −0.0381246
\(689\) −3.00000 −0.114291
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) −14.0000 −0.532200
\(693\) 0 0
\(694\) −14.0000 −0.531433
\(695\) 0 0
\(696\) 0 0
\(697\) −10.0000 −0.378777
\(698\) −1.00000 −0.0378506
\(699\) 0 0
\(700\) 0 0
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) 21.0000 0.790345
\(707\) −12.0000 −0.451306
\(708\) 0 0
\(709\) −50.0000 −1.87779 −0.938895 0.344204i \(-0.888149\pi\)
−0.938895 + 0.344204i \(0.888149\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.00000 −0.0374766
\(713\) −3.00000 −0.112351
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −29.0000 −1.08227
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) −7.00000 −0.260694
\(722\) 19.0000 0.707107
\(723\) 0 0
\(724\) 19.0000 0.706129
\(725\) 0 0
\(726\) 0 0
\(727\) 3.00000 0.111264 0.0556319 0.998451i \(-0.482283\pi\)
0.0556319 + 0.998451i \(0.482283\pi\)
\(728\) −3.00000 −0.111187
\(729\) 0 0
\(730\) 0 0
\(731\) −1.00000 −0.0369863
\(732\) 0 0
\(733\) −31.0000 −1.14501 −0.572506 0.819901i \(-0.694029\pi\)
−0.572506 + 0.819901i \(0.694029\pi\)
\(734\) −23.0000 −0.848945
\(735\) 0 0
\(736\) −3.00000 −0.110581
\(737\) −6.00000 −0.221013
\(738\) 0 0
\(739\) −32.0000 −1.17714 −0.588570 0.808447i \(-0.700309\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.00000 0.0367112
\(743\) 39.0000 1.43077 0.715386 0.698730i \(-0.246251\pi\)
0.715386 + 0.698730i \(0.246251\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4.00000 −0.146450
\(747\) 0 0
\(748\) −2.00000 −0.0731272
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 10.0000 0.364662
\(753\) 0 0
\(754\) 9.00000 0.327761
\(755\) 0 0
\(756\) 0 0
\(757\) 20.0000 0.726912 0.363456 0.931611i \(-0.381597\pi\)
0.363456 + 0.931611i \(0.381597\pi\)
\(758\) −12.0000 −0.435860
\(759\) 0 0
\(760\) 0 0
\(761\) 15.0000 0.543750 0.271875 0.962333i \(-0.412356\pi\)
0.271875 + 0.962333i \(0.412356\pi\)
\(762\) 0 0
\(763\) 6.00000 0.217215
\(764\) 0 0
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) −15.0000 −0.541619
\(768\) 0 0
\(769\) −38.0000 −1.37032 −0.685158 0.728395i \(-0.740267\pi\)
−0.685158 + 0.728395i \(0.740267\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.0000 −0.395899
\(773\) 24.0000 0.863220 0.431610 0.902060i \(-0.357946\pi\)
0.431610 + 0.902060i \(0.357946\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2.00000 0.0717958
\(777\) 0 0
\(778\) −2.00000 −0.0717035
\(779\) 0 0
\(780\) 0 0
\(781\) −10.0000 −0.357828
\(782\) −3.00000 −0.107280
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) 2.00000 0.0712923 0.0356462 0.999364i \(-0.488651\pi\)
0.0356462 + 0.999364i \(0.488651\pi\)
\(788\) 10.0000 0.356235
\(789\) 0 0
\(790\) 0 0
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) 30.0000 1.06533
\(794\) −38.0000 −1.34857
\(795\) 0 0
\(796\) 17.0000 0.602549
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) 10.0000 0.353775
\(800\) 0 0
\(801\) 0 0
\(802\) 14.0000 0.494357
\(803\) −20.0000 −0.705785
\(804\) 0 0
\(805\) 0 0
\(806\) 3.00000 0.105670
\(807\) 0 0
\(808\) 12.0000 0.422159
\(809\) −36.0000 −1.26569 −0.632846 0.774277i \(-0.718114\pi\)
−0.632846 + 0.774277i \(0.718114\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) −3.00000 −0.105279
\(813\) 0 0
\(814\) 8.00000 0.280400
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 30.0000 1.04893
\(819\) 0 0
\(820\) 0 0
\(821\) 3.00000 0.104701 0.0523504 0.998629i \(-0.483329\pi\)
0.0523504 + 0.998629i \(0.483329\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) 7.00000 0.243857
\(825\) 0 0
\(826\) 5.00000 0.173972
\(827\) 46.0000 1.59958 0.799788 0.600282i \(-0.204945\pi\)
0.799788 + 0.600282i \(0.204945\pi\)
\(828\) 0 0
\(829\) 38.0000 1.31979 0.659897 0.751356i \(-0.270600\pi\)
0.659897 + 0.751356i \(0.270600\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.00000 0.104006
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 21.0000 0.725433
\(839\) 20.0000 0.690477 0.345238 0.938515i \(-0.387798\pi\)
0.345238 + 0.938515i \(0.387798\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −14.0000 −0.482472
\(843\) 0 0
\(844\) 19.0000 0.654007
\(845\) 0 0
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) −1.00000 −0.0343401
\(849\) 0 0
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) 49.0000 1.67773 0.838864 0.544341i \(-0.183220\pi\)
0.838864 + 0.544341i \(0.183220\pi\)
\(854\) −10.0000 −0.342193
\(855\) 0 0
\(856\) 6.00000 0.205076
\(857\) 51.0000 1.74213 0.871063 0.491171i \(-0.163431\pi\)
0.871063 + 0.491171i \(0.163431\pi\)
\(858\) 0 0
\(859\) 48.0000 1.63774 0.818869 0.573980i \(-0.194601\pi\)
0.818869 + 0.573980i \(0.194601\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) 17.0000 0.578687 0.289343 0.957225i \(-0.406563\pi\)
0.289343 + 0.957225i \(0.406563\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −4.00000 −0.135926
\(867\) 0 0
\(868\) −1.00000 −0.0339422
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 9.00000 0.304953
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −32.0000 −1.08056 −0.540282 0.841484i \(-0.681682\pi\)
−0.540282 + 0.841484i \(0.681682\pi\)
\(878\) −13.0000 −0.438729
\(879\) 0 0
\(880\) 0 0
\(881\) −13.0000 −0.437981 −0.218991 0.975727i \(-0.570276\pi\)
−0.218991 + 0.975727i \(0.570276\pi\)
\(882\) 0 0
\(883\) −3.00000 −0.100958 −0.0504790 0.998725i \(-0.516075\pi\)
−0.0504790 + 0.998725i \(0.516075\pi\)
\(884\) 3.00000 0.100901
\(885\) 0 0
\(886\) 40.0000 1.34383
\(887\) 4.00000 0.134307 0.0671534 0.997743i \(-0.478608\pi\)
0.0671534 + 0.997743i \(0.478608\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −36.0000 −1.20134
\(899\) 3.00000 0.100056
\(900\) 0 0
\(901\) −1.00000 −0.0333148
\(902\) −20.0000 −0.665927
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) 0 0
\(906\) 0 0
\(907\) 52.0000 1.72663 0.863316 0.504664i \(-0.168384\pi\)
0.863316 + 0.504664i \(0.168384\pi\)
\(908\) 19.0000 0.630537
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) −11.0000 −0.363848
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) −7.00000 −0.231160
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 38.0000 1.25146
\(923\) 15.0000 0.493731
\(924\) 0 0
\(925\) 0 0
\(926\) 8.00000 0.262896
\(927\) 0 0
\(928\) 3.00000 0.0984798
\(929\) −26.0000 −0.853032 −0.426516 0.904480i \(-0.640259\pi\)
−0.426516 + 0.904480i \(0.640259\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) 20.0000 0.654420
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) −3.00000 −0.0979535
\(939\) 0 0
\(940\) 0 0
\(941\) 2.00000 0.0651981 0.0325991 0.999469i \(-0.489622\pi\)
0.0325991 + 0.999469i \(0.489622\pi\)
\(942\) 0 0
\(943\) −30.0000 −0.976934
\(944\) −5.00000 −0.162736
\(945\) 0 0
\(946\) −2.00000 −0.0650256
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) 30.0000 0.973841
\(950\) 0 0
\(951\) 0 0
\(952\) −1.00000 −0.0324102
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) 0 0
\(958\) 0 0
\(959\) 18.0000 0.581250
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) −12.0000 −0.386896
\(963\) 0 0
\(964\) 4.00000 0.128831
\(965\) 0 0
\(966\) 0 0
\(967\) −52.0000 −1.67221 −0.836104 0.548572i \(-0.815172\pi\)
−0.836104 + 0.548572i \(0.815172\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) 21.0000 0.673922 0.336961 0.941519i \(-0.390601\pi\)
0.336961 + 0.941519i \(0.390601\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) −34.0000 −1.08943
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) −2.00000 −0.0639203
\(980\) 0 0
\(981\) 0 0
\(982\) −24.0000 −0.765871
\(983\) 16.0000 0.510321 0.255160 0.966899i \(-0.417872\pi\)
0.255160 + 0.966899i \(0.417872\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 3.00000 0.0955395
\(987\) 0 0
\(988\) 0 0
\(989\) −3.00000 −0.0953945
\(990\) 0 0
\(991\) −50.0000 −1.58830 −0.794151 0.607720i \(-0.792084\pi\)
−0.794151 + 0.607720i \(0.792084\pi\)
\(992\) 1.00000 0.0317500
\(993\) 0 0
\(994\) −5.00000 −0.158590
\(995\) 0 0
\(996\) 0 0
\(997\) 43.0000 1.36182 0.680912 0.732365i \(-0.261584\pi\)
0.680912 + 0.732365i \(0.261584\pi\)
\(998\) 36.0000 1.13956
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))