Properties

Label 87.1.d.a
Level $87$
Weight $1$
Character orbit 87.d
Self dual yes
Analytic conductor $0.043$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -87
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 87.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(0.0434186560991\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{3}\)
Projective field Galois closure of 3.1.87.1
Artin image $S_3$
Artin field Galois closure of 3.1.87.1

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} - q^{6} - q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} - q^{6} - q^{7} + q^{8} + q^{9} - q^{11} - q^{13} + q^{14} - q^{16} - q^{17} - q^{18} - q^{21} + q^{22} + q^{24} + q^{25} + q^{26} + q^{27} + q^{29} - q^{33} + q^{34} - q^{39} + 2q^{41} + q^{42} - q^{47} - q^{48} - q^{50} - q^{51} - q^{54} - q^{56} - q^{58} - q^{63} + q^{64} + q^{66} - q^{67} + q^{72} + q^{75} + q^{77} + q^{78} + q^{81} - 2q^{82} + q^{87} - q^{88} - q^{89} + q^{91} + q^{94} - q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
86.1
0
−1.00000 1.00000 0 0 −1.00000 −1.00000 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
87.d odd 2 1 CM by \(\Q(\sqrt{-87}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 87.1.d.a 1
3.b odd 2 1 87.1.d.b yes 1
4.b odd 2 1 1392.1.i.a 1
5.b even 2 1 2175.1.h.b 1
5.c odd 4 2 2175.1.b.a 2
9.c even 3 2 2349.1.h.b 2
9.d odd 6 2 2349.1.h.a 2
12.b even 2 1 1392.1.i.b 1
15.d odd 2 1 2175.1.h.a 1
15.e even 4 2 2175.1.b.b 2
29.b even 2 1 87.1.d.b yes 1
29.c odd 4 2 2523.1.b.b 2
29.d even 7 6 2523.1.h.b 6
29.e even 14 6 2523.1.h.a 6
29.f odd 28 12 2523.1.j.b 12
87.d odd 2 1 CM 87.1.d.a 1
87.f even 4 2 2523.1.b.b 2
87.h odd 14 6 2523.1.h.b 6
87.j odd 14 6 2523.1.h.a 6
87.k even 28 12 2523.1.j.b 12
116.d odd 2 1 1392.1.i.b 1
145.d even 2 1 2175.1.h.a 1
145.h odd 4 2 2175.1.b.b 2
261.h odd 6 2 2349.1.h.b 2
261.i even 6 2 2349.1.h.a 2
348.b even 2 1 1392.1.i.a 1
435.b odd 2 1 2175.1.h.b 1
435.p even 4 2 2175.1.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.1.d.a 1 1.a even 1 1 trivial
87.1.d.a 1 87.d odd 2 1 CM
87.1.d.b yes 1 3.b odd 2 1
87.1.d.b yes 1 29.b even 2 1
1392.1.i.a 1 4.b odd 2 1
1392.1.i.a 1 348.b even 2 1
1392.1.i.b 1 12.b even 2 1
1392.1.i.b 1 116.d odd 2 1
2175.1.b.a 2 5.c odd 4 2
2175.1.b.a 2 435.p even 4 2
2175.1.b.b 2 15.e even 4 2
2175.1.b.b 2 145.h odd 4 2
2175.1.h.a 1 15.d odd 2 1
2175.1.h.a 1 145.d even 2 1
2175.1.h.b 1 5.b even 2 1
2175.1.h.b 1 435.b odd 2 1
2349.1.h.a 2 9.d odd 6 2
2349.1.h.a 2 261.i even 6 2
2349.1.h.b 2 9.c even 3 2
2349.1.h.b 2 261.h odd 6 2
2523.1.b.b 2 29.c odd 4 2
2523.1.b.b 2 87.f even 4 2
2523.1.h.a 6 29.e even 14 6
2523.1.h.a 6 87.j odd 14 6
2523.1.h.b 6 29.d even 7 6
2523.1.h.b 6 87.h odd 14 6
2523.1.j.b 12 29.f odd 28 12
2523.1.j.b 12 87.k even 28 12

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(87, [\chi])\).