Properties

Label 8048.2.a.w
Level 8048
Weight 2
Character orbit 8048.a
Self dual Yes
Analytic conductor 64.264
Analytic rank 0
Dimension 29
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8048 = 2^{4} \cdot 503 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8048.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.2636035467\)
Analytic rank: \(0\)
Dimension: \(29\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(29q \) \(\mathstrut +\mathstrut 7q^{3} \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut +\mathstrut 13q^{7} \) \(\mathstrut +\mathstrut 20q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(29q \) \(\mathstrut +\mathstrut 7q^{3} \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut +\mathstrut 13q^{7} \) \(\mathstrut +\mathstrut 20q^{9} \) \(\mathstrut +\mathstrut 27q^{11} \) \(\mathstrut +\mathstrut 16q^{13} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 15q^{17} \) \(\mathstrut +\mathstrut 14q^{19} \) \(\mathstrut +\mathstrut q^{21} \) \(\mathstrut +\mathstrut 25q^{23} \) \(\mathstrut +\mathstrut 21q^{25} \) \(\mathstrut +\mathstrut 25q^{27} \) \(\mathstrut -\mathstrut 13q^{29} \) \(\mathstrut +\mathstrut 27q^{31} \) \(\mathstrut -\mathstrut 9q^{33} \) \(\mathstrut +\mathstrut 29q^{35} \) \(\mathstrut +\mathstrut 35q^{37} \) \(\mathstrut +\mathstrut 38q^{39} \) \(\mathstrut -\mathstrut 30q^{41} \) \(\mathstrut +\mathstrut 38q^{43} \) \(\mathstrut +\mathstrut q^{45} \) \(\mathstrut +\mathstrut 35q^{47} \) \(\mathstrut +\mathstrut 14q^{49} \) \(\mathstrut +\mathstrut 21q^{51} \) \(\mathstrut +\mathstrut 2q^{53} \) \(\mathstrut +\mathstrut 25q^{55} \) \(\mathstrut -\mathstrut 25q^{57} \) \(\mathstrut +\mathstrut 40q^{59} \) \(\mathstrut +\mathstrut 10q^{61} \) \(\mathstrut +\mathstrut 56q^{63} \) \(\mathstrut -\mathstrut 50q^{65} \) \(\mathstrut +\mathstrut 31q^{67} \) \(\mathstrut +\mathstrut 11q^{69} \) \(\mathstrut +\mathstrut 65q^{71} \) \(\mathstrut -\mathstrut 23q^{73} \) \(\mathstrut +\mathstrut 32q^{75} \) \(\mathstrut +\mathstrut 13q^{77} \) \(\mathstrut +\mathstrut 44q^{79} \) \(\mathstrut -\mathstrut 7q^{81} \) \(\mathstrut +\mathstrut 41q^{83} \) \(\mathstrut +\mathstrut 26q^{85} \) \(\mathstrut +\mathstrut 25q^{87} \) \(\mathstrut -\mathstrut 48q^{89} \) \(\mathstrut +\mathstrut 44q^{91} \) \(\mathstrut +\mathstrut 25q^{93} \) \(\mathstrut +\mathstrut 75q^{95} \) \(\mathstrut -\mathstrut 18q^{97} \) \(\mathstrut +\mathstrut 80q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 0 −3.11496 0 0.544032 0 4.06617 0 6.70298 0
1.2 0 −2.62135 0 −1.76626 0 −2.03701 0 3.87147 0
1.3 0 −2.38925 0 −0.218073 0 2.23687 0 2.70851 0
1.4 0 −2.22567 0 −3.22615 0 −0.00440441 0 1.95359 0
1.5 0 −2.04161 0 −4.02753 0 −1.43352 0 1.16816 0
1.6 0 −1.71451 0 −1.13020 0 1.00303 0 −0.0604433 0
1.7 0 −1.62590 0 3.78842 0 2.93814 0 −0.356460 0
1.8 0 −1.30647 0 0.939477 0 −2.17911 0 −1.29314 0
1.9 0 −1.29900 0 2.09702 0 3.13973 0 −1.31260 0
1.10 0 −1.28849 0 −1.09309 0 −0.799248 0 −1.33979 0
1.11 0 −0.936010 0 1.25557 0 −0.290471 0 −2.12388 0
1.12 0 −0.454325 0 0.622756 0 4.14589 0 −2.79359 0
1.13 0 0.137144 0 1.57958 0 −4.44075 0 −2.98119 0
1.14 0 0.278789 0 −0.533193 0 −1.93823 0 −2.92228 0
1.15 0 0.502218 0 −3.38571 0 −3.39706 0 −2.74778 0
1.16 0 0.582422 0 −3.18976 0 3.00819 0 −2.66078 0
1.17 0 0.782310 0 2.74195 0 3.13445 0 −2.38799 0
1.18 0 0.795174 0 3.83818 0 −0.297725 0 −2.36770 0
1.19 0 1.10456 0 −2.70098 0 −3.17910 0 −1.77994 0
1.20 0 1.15550 0 −3.26045 0 1.92982 0 −1.66482 0
See all 29 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.29
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(503\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8048))\):

\(T_{3}^{29} - \cdots\)
\(T_{5}^{29} + \cdots\)
\(T_{7}^{29} - \cdots\)
\(T_{13}^{29} - \cdots\)