Properties

Label 8047.2.a.e
Level 8047
Weight 2
Character orbit 8047.a
Self dual Yes
Analytic conductor 64.256
Analytic rank 0
Dimension 168
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8047 = 13 \cdot 619 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8047.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.2556185065\)
Analytic rank: \(0\)
Dimension: \(168\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(168q \) \(\mathstrut +\mathstrut 11q^{2} \) \(\mathstrut +\mathstrut 26q^{3} \) \(\mathstrut +\mathstrut 181q^{4} \) \(\mathstrut +\mathstrut 41q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 12q^{7} \) \(\mathstrut +\mathstrut 27q^{8} \) \(\mathstrut +\mathstrut 220q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(168q \) \(\mathstrut +\mathstrut 11q^{2} \) \(\mathstrut +\mathstrut 26q^{3} \) \(\mathstrut +\mathstrut 181q^{4} \) \(\mathstrut +\mathstrut 41q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 12q^{7} \) \(\mathstrut +\mathstrut 27q^{8} \) \(\mathstrut +\mathstrut 220q^{9} \) \(\mathstrut +\mathstrut 11q^{10} \) \(\mathstrut +\mathstrut 23q^{11} \) \(\mathstrut +\mathstrut 78q^{12} \) \(\mathstrut +\mathstrut 168q^{13} \) \(\mathstrut +\mathstrut 47q^{14} \) \(\mathstrut +\mathstrut 10q^{15} \) \(\mathstrut +\mathstrut 203q^{16} \) \(\mathstrut +\mathstrut 147q^{17} \) \(\mathstrut +\mathstrut 13q^{18} \) \(\mathstrut +\mathstrut 17q^{19} \) \(\mathstrut +\mathstrut 81q^{20} \) \(\mathstrut +\mathstrut 13q^{21} \) \(\mathstrut +\mathstrut 20q^{22} \) \(\mathstrut +\mathstrut 85q^{23} \) \(\mathstrut +\mathstrut 14q^{24} \) \(\mathstrut +\mathstrut 225q^{25} \) \(\mathstrut +\mathstrut 11q^{26} \) \(\mathstrut +\mathstrut 89q^{27} \) \(\mathstrut +\mathstrut 12q^{28} \) \(\mathstrut +\mathstrut 137q^{29} \) \(\mathstrut +\mathstrut 26q^{30} \) \(\mathstrut +\mathstrut 13q^{31} \) \(\mathstrut +\mathstrut 60q^{32} \) \(\mathstrut +\mathstrut 78q^{33} \) \(\mathstrut -\mathstrut 2q^{34} \) \(\mathstrut +\mathstrut 77q^{35} \) \(\mathstrut +\mathstrut 278q^{36} \) \(\mathstrut +\mathstrut 41q^{37} \) \(\mathstrut +\mathstrut 68q^{38} \) \(\mathstrut +\mathstrut 26q^{39} \) \(\mathstrut +\mathstrut 11q^{40} \) \(\mathstrut +\mathstrut 107q^{41} \) \(\mathstrut +\mathstrut 43q^{42} \) \(\mathstrut +\mathstrut 27q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 88q^{45} \) \(\mathstrut -\mathstrut 23q^{46} \) \(\mathstrut +\mathstrut 112q^{47} \) \(\mathstrut +\mathstrut 127q^{48} \) \(\mathstrut +\mathstrut 236q^{49} \) \(\mathstrut +\mathstrut 14q^{50} \) \(\mathstrut +\mathstrut 55q^{51} \) \(\mathstrut +\mathstrut 181q^{52} \) \(\mathstrut +\mathstrut 149q^{53} \) \(\mathstrut +\mathstrut 3q^{54} \) \(\mathstrut +\mathstrut 40q^{55} \) \(\mathstrut +\mathstrut 134q^{56} \) \(\mathstrut +\mathstrut 55q^{57} \) \(\mathstrut -\mathstrut q^{58} \) \(\mathstrut +\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 13q^{60} \) \(\mathstrut +\mathstrut 81q^{61} \) \(\mathstrut +\mathstrut 106q^{62} \) \(\mathstrut +\mathstrut 34q^{63} \) \(\mathstrut +\mathstrut 197q^{64} \) \(\mathstrut +\mathstrut 41q^{65} \) \(\mathstrut -\mathstrut 20q^{66} \) \(\mathstrut -\mathstrut q^{67} \) \(\mathstrut +\mathstrut 278q^{68} \) \(\mathstrut +\mathstrut 75q^{69} \) \(\mathstrut -\mathstrut 42q^{70} \) \(\mathstrut +\mathstrut 48q^{71} \) \(\mathstrut -\mathstrut 34q^{72} \) \(\mathstrut +\mathstrut 107q^{73} \) \(\mathstrut +\mathstrut 74q^{74} \) \(\mathstrut +\mathstrut 93q^{75} \) \(\mathstrut +\mathstrut 20q^{76} \) \(\mathstrut +\mathstrut 206q^{77} \) \(\mathstrut +\mathstrut 11q^{78} \) \(\mathstrut +\mathstrut 14q^{79} \) \(\mathstrut +\mathstrut 115q^{80} \) \(\mathstrut +\mathstrut 328q^{81} \) \(\mathstrut +\mathstrut 48q^{82} \) \(\mathstrut +\mathstrut 62q^{83} \) \(\mathstrut -\mathstrut 11q^{84} \) \(\mathstrut +\mathstrut 6q^{85} \) \(\mathstrut +\mathstrut 27q^{86} \) \(\mathstrut +\mathstrut 51q^{87} \) \(\mathstrut +\mathstrut 31q^{88} \) \(\mathstrut +\mathstrut 173q^{89} \) \(\mathstrut -\mathstrut 21q^{90} \) \(\mathstrut +\mathstrut 12q^{91} \) \(\mathstrut +\mathstrut 179q^{92} \) \(\mathstrut +\mathstrut 73q^{93} \) \(\mathstrut +\mathstrut 17q^{94} \) \(\mathstrut +\mathstrut 90q^{95} \) \(\mathstrut -\mathstrut 33q^{96} \) \(\mathstrut +\mathstrut 110q^{97} \) \(\mathstrut -\mathstrut 13q^{98} \) \(\mathstrut +\mathstrut 24q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.81579 1.75700 5.92868 −0.878024 −4.94733 −1.13202 −11.0623 0.0870368 2.47233
1.2 −2.76928 −1.56618 5.66891 −1.99910 4.33718 −3.75052 −10.1602 −0.547092 5.53606
1.3 −2.76470 3.06859 5.64359 2.61743 −8.48374 4.52897 −10.0734 6.41624 −7.23642
1.4 −2.69715 2.56324 5.27461 3.51333 −6.91344 −4.43417 −8.83210 3.57021 −9.47597
1.5 −2.59593 −2.11181 4.73887 −0.212258 5.48213 0.982044 −7.10991 1.45976 0.551008
1.6 −2.59413 −3.39586 4.72950 2.81515 8.80929 −0.0603743 −7.08068 8.53185 −7.30287
1.7 −2.58760 −0.932881 4.69570 1.35951 2.41393 0.312733 −6.97540 −2.12973 −3.51787
1.8 −2.56793 0.140851 4.59428 −0.0428559 −0.361697 −5.13541 −6.66194 −2.98016 0.110051
1.9 −2.56640 1.62937 4.58642 4.01357 −4.18162 3.25555 −6.63781 −0.345155 −10.3004
1.10 −2.55763 0.266085 4.54145 −4.02410 −0.680547 −2.52095 −6.50007 −2.92920 10.2921
1.11 −2.52416 3.25012 4.37136 −2.90640 −8.20382 1.38708 −5.98570 7.56330 7.33621
1.12 −2.51705 1.87666 4.33553 0.537447 −4.72364 0.939568 −5.87865 0.521853 −1.35278
1.13 −2.51491 3.41977 4.32478 −1.23152 −8.60042 −3.67991 −5.84661 8.69483 3.09716
1.14 −2.50460 −2.26782 4.27304 0.233077 5.68000 −0.679959 −5.69306 2.14302 −0.583765
1.15 −2.43925 −2.47662 3.94994 4.18680 6.04110 3.85857 −4.75640 3.13366 −10.2127
1.16 −2.43547 −1.20585 3.93153 2.83456 2.93681 −2.65946 −4.70420 −1.54594 −6.90350
1.17 −2.39466 −2.35552 3.73441 0.950970 5.64068 −0.373318 −4.15331 2.54848 −2.27725
1.18 −2.38728 1.74228 3.69910 −3.20056 −4.15931 −0.986874 −4.05622 0.0355448 7.64064
1.19 −2.35312 −0.357062 3.53719 1.67497 0.840212 4.28147 −3.61721 −2.87251 −3.94141
1.20 −2.33973 −0.0830321 3.47431 −2.47504 0.194272 1.67237 −3.44949 −2.99311 5.79091
See next 80 embeddings (of 168 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.168
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(13\) \(-1\)
\(619\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2}^{168} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8047))\).