Properties

Label 8044.2.a.b
Level 8044
Weight 2
Character orbit 8044.a
Self dual Yes
Analytic conductor 64.232
Analytic rank 0
Dimension 87
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8044 = 2^{2} \cdot 2011 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8044.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.2316633859\)
Analytic rank: \(0\)
Dimension: \(87\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(87q \) \(\mathstrut +\mathstrut 13q^{3} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut 8q^{7} \) \(\mathstrut +\mathstrut 98q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(87q \) \(\mathstrut +\mathstrut 13q^{3} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut 8q^{7} \) \(\mathstrut +\mathstrut 98q^{9} \) \(\mathstrut +\mathstrut 36q^{11} \) \(\mathstrut -\mathstrut q^{13} \) \(\mathstrut +\mathstrut 16q^{15} \) \(\mathstrut +\mathstrut 31q^{17} \) \(\mathstrut +\mathstrut 35q^{19} \) \(\mathstrut -\mathstrut 3q^{21} \) \(\mathstrut +\mathstrut 39q^{23} \) \(\mathstrut +\mathstrut 93q^{25} \) \(\mathstrut +\mathstrut 55q^{27} \) \(\mathstrut -\mathstrut 5q^{29} \) \(\mathstrut +\mathstrut 46q^{31} \) \(\mathstrut +\mathstrut 25q^{33} \) \(\mathstrut +\mathstrut 68q^{35} \) \(\mathstrut -\mathstrut 11q^{37} \) \(\mathstrut +\mathstrut 54q^{39} \) \(\mathstrut +\mathstrut 83q^{41} \) \(\mathstrut +\mathstrut 28q^{43} \) \(\mathstrut -\mathstrut 14q^{45} \) \(\mathstrut +\mathstrut 48q^{47} \) \(\mathstrut +\mathstrut 103q^{49} \) \(\mathstrut +\mathstrut 77q^{51} \) \(\mathstrut +\mathstrut 3q^{53} \) \(\mathstrut +\mathstrut 35q^{55} \) \(\mathstrut +\mathstrut 14q^{57} \) \(\mathstrut +\mathstrut 122q^{59} \) \(\mathstrut -\mathstrut 13q^{61} \) \(\mathstrut +\mathstrut 39q^{63} \) \(\mathstrut +\mathstrut 41q^{65} \) \(\mathstrut +\mathstrut 32q^{67} \) \(\mathstrut -\mathstrut 10q^{69} \) \(\mathstrut +\mathstrut 100q^{71} \) \(\mathstrut +\mathstrut 34q^{73} \) \(\mathstrut +\mathstrut 97q^{75} \) \(\mathstrut +\mathstrut 4q^{77} \) \(\mathstrut +\mathstrut 52q^{79} \) \(\mathstrut +\mathstrut 131q^{81} \) \(\mathstrut +\mathstrut 67q^{83} \) \(\mathstrut -\mathstrut 2q^{85} \) \(\mathstrut +\mathstrut 89q^{87} \) \(\mathstrut +\mathstrut 68q^{89} \) \(\mathstrut +\mathstrut 75q^{91} \) \(\mathstrut +\mathstrut 138q^{95} \) \(\mathstrut +\mathstrut 36q^{97} \) \(\mathstrut +\mathstrut 107q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 0 −3.34584 0 −2.78395 0 −2.30232 0 8.19464 0
1.2 0 −3.25232 0 1.12026 0 2.54903 0 7.57755 0
1.3 0 −3.19446 0 −0.458477 0 4.07842 0 7.20455 0
1.4 0 −3.01797 0 3.94367 0 1.03981 0 6.10812 0
1.5 0 −2.93853 0 0.993611 0 0.0902794 0 5.63497 0
1.6 0 −2.85294 0 −2.90004 0 −0.912476 0 5.13929 0
1.7 0 −2.80093 0 −0.853190 0 −2.91337 0 4.84521 0
1.8 0 −2.79173 0 1.70131 0 4.83461 0 4.79373 0
1.9 0 −2.70670 0 −2.00035 0 3.54114 0 4.32622 0
1.10 0 −2.55851 0 1.25574 0 −4.90748 0 3.54596 0
1.11 0 −2.49825 0 0.886500 0 −2.30257 0 3.24125 0
1.12 0 −2.42698 0 −3.68217 0 −0.776134 0 2.89025 0
1.13 0 −2.39922 0 −4.31592 0 −4.16363 0 2.75627 0
1.14 0 −2.20292 0 0.146880 0 −2.30848 0 1.85284 0
1.15 0 −2.16825 0 −3.99117 0 4.93889 0 1.70132 0
1.16 0 −2.09889 0 0.451798 0 −0.670101 0 1.40535 0
1.17 0 −2.04177 0 −2.46672 0 0.440869 0 1.16884 0
1.18 0 −1.91101 0 1.73128 0 2.74768 0 0.651964 0
1.19 0 −1.89591 0 2.40728 0 3.56479 0 0.594467 0
1.20 0 −1.85639 0 −1.86854 0 −1.80463 0 0.446172 0
See all 87 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.87
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(2011\) \(1\)