Properties

Label 8043.2.a.m
Level 8043
Weight 2
Character orbit 8043.a
Self dual Yes
Analytic conductor 64.224
Analytic rank 0
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8043 = 3 \cdot 7 \cdot 383 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8043.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.2236783457\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( -\beta_{1} q^{2} \) \(+ q^{3}\) \( + ( 1 + \beta_{1} + \beta_{2} ) q^{4} \) \( + ( -1 + \beta_{1} ) q^{5} \) \( -\beta_{1} q^{6} \) \(- q^{7}\) \( + ( -2 - 2 \beta_{1} - \beta_{2} ) q^{8} \) \(+ q^{9}\) \(+O(q^{10})\) \( q\) \( -\beta_{1} q^{2} \) \(+ q^{3}\) \( + ( 1 + \beta_{1} + \beta_{2} ) q^{4} \) \( + ( -1 + \beta_{1} ) q^{5} \) \( -\beta_{1} q^{6} \) \(- q^{7}\) \( + ( -2 - 2 \beta_{1} - \beta_{2} ) q^{8} \) \(+ q^{9}\) \( + ( -3 - \beta_{2} ) q^{10} \) \( + ( 1 + \beta_{2} ) q^{11} \) \( + ( 1 + \beta_{1} + \beta_{2} ) q^{12} \) \( + ( 5 - \beta_{1} ) q^{13} \) \( + \beta_{1} q^{14} \) \( + ( -1 + \beta_{1} ) q^{15} \) \( + ( 3 + 4 \beta_{1} ) q^{16} \) \( + ( -4 + \beta_{1} + \beta_{2} ) q^{17} \) \( -\beta_{1} q^{18} \) \( + ( 2 \beta_{1} + 2 \beta_{2} ) q^{19} \) \( + ( 1 + 3 \beta_{1} ) q^{20} \) \(- q^{21}\) \( + ( 1 - 3 \beta_{1} ) q^{22} \) \( + ( 2 + 3 \beta_{1} - \beta_{2} ) q^{23} \) \( + ( -2 - 2 \beta_{1} - \beta_{2} ) q^{24} \) \( + ( -1 - \beta_{1} + \beta_{2} ) q^{25} \) \( + ( 3 - 4 \beta_{1} + \beta_{2} ) q^{26} \) \(+ q^{27}\) \( + ( -1 - \beta_{1} - \beta_{2} ) q^{28} \) \( + ( 2 + \beta_{1} + 3 \beta_{2} ) q^{29} \) \( + ( -3 - \beta_{2} ) q^{30} \) \( + ( -6 - \beta_{1} - \beta_{2} ) q^{31} \) \( + ( -8 - 3 \beta_{1} - 2 \beta_{2} ) q^{32} \) \( + ( 1 + \beta_{2} ) q^{33} \) \( + ( -2 + \beta_{1} - \beta_{2} ) q^{34} \) \( + ( 1 - \beta_{1} ) q^{35} \) \( + ( 1 + \beta_{1} + \beta_{2} ) q^{36} \) \( + 10 q^{37} \) \( + ( -4 - 6 \beta_{1} - 2 \beta_{2} ) q^{38} \) \( + ( 5 - \beta_{1} ) q^{39} \) \( + ( -3 - 4 \beta_{1} - \beta_{2} ) q^{40} \) \( + ( 5 + \beta_{1} - 2 \beta_{2} ) q^{41} \) \( + \beta_{1} q^{42} \) \( + ( 2 + 2 \beta_{1} ) q^{43} \) \( + ( 7 + 2 \beta_{1} + \beta_{2} ) q^{44} \) \( + ( -1 + \beta_{1} ) q^{45} \) \( + ( -10 - 3 \beta_{1} - 3 \beta_{2} ) q^{46} \) \( + ( 2 + 2 \beta_{2} ) q^{47} \) \( + ( 3 + 4 \beta_{1} ) q^{48} \) \(+ q^{49}\) \( + ( 4 + \beta_{2} ) q^{50} \) \( + ( -4 + \beta_{1} + \beta_{2} ) q^{51} \) \( + ( 3 + \beta_{1} + 4 \beta_{2} ) q^{52} \) \( + ( 4 + \beta_{1} + \beta_{2} ) q^{53} \) \( -\beta_{1} q^{54} \) \( + ( -2 + 3 \beta_{1} - \beta_{2} ) q^{55} \) \( + ( 2 + 2 \beta_{1} + \beta_{2} ) q^{56} \) \( + ( 2 \beta_{1} + 2 \beta_{2} ) q^{57} \) \( + ( -9 \beta_{1} - \beta_{2} ) q^{58} \) \( + ( 4 + 2 \beta_{1} + 2 \beta_{2} ) q^{59} \) \( + ( 1 + 3 \beta_{1} ) q^{60} \) \( + ( -7 - 3 \beta_{1} + 2 \beta_{2} ) q^{61} \) \( + ( 2 + 9 \beta_{1} + \beta_{2} ) q^{62} \) \(- q^{63}\) \( + ( 1 + 7 \beta_{1} + 3 \beta_{2} ) q^{64} \) \( + ( -8 + 5 \beta_{1} - \beta_{2} ) q^{65} \) \( + ( 1 - 3 \beta_{1} ) q^{66} \) \( + ( -10 + 4 \beta_{1} + 2 \beta_{2} ) q^{67} \) \( + ( 4 + \beta_{1} - 3 \beta_{2} ) q^{68} \) \( + ( 2 + 3 \beta_{1} - \beta_{2} ) q^{69} \) \( + ( 3 + \beta_{2} ) q^{70} \) \( + ( 2 - 3 \beta_{1} - 3 \beta_{2} ) q^{71} \) \( + ( -2 - 2 \beta_{1} - \beta_{2} ) q^{72} \) \( + ( 2 - 4 \beta_{1} ) q^{73} \) \( -10 \beta_{1} q^{74} \) \( + ( -1 - \beta_{1} + \beta_{2} ) q^{75} \) \( + ( 16 + 10 \beta_{1} + 2 \beta_{2} ) q^{76} \) \( + ( -1 - \beta_{2} ) q^{77} \) \( + ( 3 - 4 \beta_{1} + \beta_{2} ) q^{78} \) \( + ( -5 + 2 \beta_{1} + \beta_{2} ) q^{79} \) \( + ( 9 + 3 \beta_{1} + 4 \beta_{2} ) q^{80} \) \(+ q^{81}\) \( + ( -5 - 2 \beta_{1} - \beta_{2} ) q^{82} \) \( + ( 8 - 4 \beta_{1} ) q^{83} \) \( + ( -1 - \beta_{1} - \beta_{2} ) q^{84} \) \( + ( 6 - 2 \beta_{1} ) q^{85} \) \( + ( -6 - 4 \beta_{1} - 2 \beta_{2} ) q^{86} \) \( + ( 2 + \beta_{1} + 3 \beta_{2} ) q^{87} \) \( + ( -7 - 5 \beta_{1} - 2 \beta_{2} ) q^{88} \) \( + ( 1 - 3 \beta_{1} - 2 \beta_{2} ) q^{89} \) \( + ( -3 - \beta_{2} ) q^{90} \) \( + ( -5 + \beta_{1} ) q^{91} \) \( + ( 2 + 13 \beta_{1} + 5 \beta_{2} ) q^{92} \) \( + ( -6 - \beta_{1} - \beta_{2} ) q^{93} \) \( + ( 2 - 6 \beta_{1} ) q^{94} \) \( + ( 4 + 4 \beta_{1} ) q^{95} \) \( + ( -8 - 3 \beta_{1} - 2 \beta_{2} ) q^{96} \) \( + ( 7 - \beta_{1} - 2 \beta_{2} ) q^{97} \) \( -\beta_{1} q^{98} \) \( + ( 1 + \beta_{2} ) q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(3q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut +\mathstrut 5q^{4} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut q^{6} \) \(\mathstrut -\mathstrut 3q^{7} \) \(\mathstrut -\mathstrut 9q^{8} \) \(\mathstrut +\mathstrut 3q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(3q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut 3q^{3} \) \(\mathstrut +\mathstrut 5q^{4} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut q^{6} \) \(\mathstrut -\mathstrut 3q^{7} \) \(\mathstrut -\mathstrut 9q^{8} \) \(\mathstrut +\mathstrut 3q^{9} \) \(\mathstrut -\mathstrut 10q^{10} \) \(\mathstrut +\mathstrut 4q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut +\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut q^{14} \) \(\mathstrut -\mathstrut 2q^{15} \) \(\mathstrut +\mathstrut 13q^{16} \) \(\mathstrut -\mathstrut 10q^{17} \) \(\mathstrut -\mathstrut q^{18} \) \(\mathstrut +\mathstrut 4q^{19} \) \(\mathstrut +\mathstrut 6q^{20} \) \(\mathstrut -\mathstrut 3q^{21} \) \(\mathstrut +\mathstrut 8q^{23} \) \(\mathstrut -\mathstrut 9q^{24} \) \(\mathstrut -\mathstrut 3q^{25} \) \(\mathstrut +\mathstrut 6q^{26} \) \(\mathstrut +\mathstrut 3q^{27} \) \(\mathstrut -\mathstrut 5q^{28} \) \(\mathstrut +\mathstrut 10q^{29} \) \(\mathstrut -\mathstrut 10q^{30} \) \(\mathstrut -\mathstrut 20q^{31} \) \(\mathstrut -\mathstrut 29q^{32} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 6q^{34} \) \(\mathstrut +\mathstrut 2q^{35} \) \(\mathstrut +\mathstrut 5q^{36} \) \(\mathstrut +\mathstrut 30q^{37} \) \(\mathstrut -\mathstrut 20q^{38} \) \(\mathstrut +\mathstrut 14q^{39} \) \(\mathstrut -\mathstrut 14q^{40} \) \(\mathstrut +\mathstrut 14q^{41} \) \(\mathstrut +\mathstrut q^{42} \) \(\mathstrut +\mathstrut 8q^{43} \) \(\mathstrut +\mathstrut 24q^{44} \) \(\mathstrut -\mathstrut 2q^{45} \) \(\mathstrut -\mathstrut 36q^{46} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut +\mathstrut 13q^{48} \) \(\mathstrut +\mathstrut 3q^{49} \) \(\mathstrut +\mathstrut 13q^{50} \) \(\mathstrut -\mathstrut 10q^{51} \) \(\mathstrut +\mathstrut 14q^{52} \) \(\mathstrut +\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut q^{54} \) \(\mathstrut -\mathstrut 4q^{55} \) \(\mathstrut +\mathstrut 9q^{56} \) \(\mathstrut +\mathstrut 4q^{57} \) \(\mathstrut -\mathstrut 10q^{58} \) \(\mathstrut +\mathstrut 16q^{59} \) \(\mathstrut +\mathstrut 6q^{60} \) \(\mathstrut -\mathstrut 22q^{61} \) \(\mathstrut +\mathstrut 16q^{62} \) \(\mathstrut -\mathstrut 3q^{63} \) \(\mathstrut +\mathstrut 13q^{64} \) \(\mathstrut -\mathstrut 20q^{65} \) \(\mathstrut -\mathstrut 24q^{67} \) \(\mathstrut +\mathstrut 10q^{68} \) \(\mathstrut +\mathstrut 8q^{69} \) \(\mathstrut +\mathstrut 10q^{70} \) \(\mathstrut -\mathstrut 9q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut -\mathstrut 10q^{74} \) \(\mathstrut -\mathstrut 3q^{75} \) \(\mathstrut +\mathstrut 60q^{76} \) \(\mathstrut -\mathstrut 4q^{77} \) \(\mathstrut +\mathstrut 6q^{78} \) \(\mathstrut -\mathstrut 12q^{79} \) \(\mathstrut +\mathstrut 34q^{80} \) \(\mathstrut +\mathstrut 3q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut +\mathstrut 20q^{83} \) \(\mathstrut -\mathstrut 5q^{84} \) \(\mathstrut +\mathstrut 16q^{85} \) \(\mathstrut -\mathstrut 24q^{86} \) \(\mathstrut +\mathstrut 10q^{87} \) \(\mathstrut -\mathstrut 28q^{88} \) \(\mathstrut -\mathstrut 2q^{89} \) \(\mathstrut -\mathstrut 10q^{90} \) \(\mathstrut -\mathstrut 14q^{91} \) \(\mathstrut +\mathstrut 24q^{92} \) \(\mathstrut -\mathstrut 20q^{93} \) \(\mathstrut +\mathstrut 16q^{95} \) \(\mathstrut -\mathstrut 29q^{96} \) \(\mathstrut +\mathstrut 18q^{97} \) \(\mathstrut -\mathstrut q^{98} \) \(\mathstrut +\mathstrut 4q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3}\mathstrut -\mathstrut \) \(x^{2}\mathstrut -\mathstrut \) \(3\) \(x\mathstrut +\mathstrut \) \(1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} - 2 \)
\(\beta_{2}\)\(=\)\( -\nu^{2} + 2 \nu + 2 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2}\mathstrut +\mathstrut \) \(\beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\(\beta_{1}\mathstrut +\mathstrut \) \(2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
−1.48119
0.311108
−2.70928 1.00000 5.34017 1.70928 −2.70928 −1.00000 −9.04945 1.00000 −4.63090
1.2 −0.193937 1.00000 −1.96239 −0.806063 −0.193937 −1.00000 0.768452 1.00000 0.156325
1.3 1.90321 1.00000 1.62222 −2.90321 1.90321 −1.00000 −0.719004 1.00000 −5.52543
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)
\(383\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8043))\):

\(T_{2}^{3} \) \(\mathstrut +\mathstrut T_{2}^{2} \) \(\mathstrut -\mathstrut 5 T_{2} \) \(\mathstrut -\mathstrut 1 \)
\(T_{5}^{3} \) \(\mathstrut +\mathstrut 2 T_{5}^{2} \) \(\mathstrut -\mathstrut 4 T_{5} \) \(\mathstrut -\mathstrut 4 \)
\(T_{11}^{3} \) \(\mathstrut -\mathstrut 4 T_{11}^{2} \) \(\mathstrut -\mathstrut 4 T_{11} \) \(\mathstrut +\mathstrut 20 \)