Properties

Label 8036.2.a.j
Level 8036
Weight 2
Character orbit 8036.a
Self dual Yes
Analytic conductor 64.168
Analytic rank 1
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8036 = 2^{2} \cdot 7^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8036.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.1677830643\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.1935333.1
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( -\beta_{1} q^{3} \) \( + ( -1 - \beta_{4} ) q^{5} \) \( + ( 1 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{9} \) \(+O(q^{10})\) \( q\) \( -\beta_{1} q^{3} \) \( + ( -1 - \beta_{4} ) q^{5} \) \( + ( 1 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{9} \) \( -\beta_{2} q^{11} \) \( + ( -1 - \beta_{3} ) q^{13} \) \( + ( 1 + \beta_{2} + \beta_{4} ) q^{15} \) \( + ( 1 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} ) q^{17} \) \( + ( -2 + \beta_{1} - \beta_{3} ) q^{19} \) \( + ( 2 + \beta_{1} ) q^{23} \) \( + ( -\beta_{2} + 2 \beta_{3} + \beta_{4} ) q^{25} \) \( + ( -4 - \beta_{1} - 2 \beta_{2} + 3 \beta_{3} - \beta_{4} ) q^{27} \) \( + ( -1 - \beta_{2} - \beta_{4} ) q^{29} \) \( + ( -1 + \beta_{4} ) q^{31} \) \( + ( 1 + 2 \beta_{1} - 2 \beta_{3} + \beta_{4} ) q^{33} \) \( + ( -1 - \beta_{2} + \beta_{3} - 2 \beta_{4} ) q^{37} \) \( + ( 1 + \beta_{1} - \beta_{2} ) q^{39} \) \(- q^{41}\) \( + ( 3 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} ) q^{43} \) \( + ( 1 - 2 \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{4} ) q^{45} \) \( + ( -3 + 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{47} \) \( + ( 1 - \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{4} ) q^{51} \) \( + ( -1 - \beta_{4} ) q^{53} \) \( + ( -3 + 2 \beta_{1} - \beta_{4} ) q^{55} \) \( + ( -3 + \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{57} \) \( + ( 1 + 2 \beta_{1} - 2 \beta_{3} + \beta_{4} ) q^{59} \) \( + ( -4 - \beta_{2} + 4 \beta_{3} + 2 \beta_{4} ) q^{61} \) \( + ( 1 + 2 \beta_{3} + 3 \beta_{4} ) q^{65} \) \( + ( 5 - 2 \beta_{1} - 2 \beta_{3} - \beta_{4} ) q^{67} \) \( + ( -4 - 3 \beta_{1} - \beta_{2} + \beta_{3} ) q^{69} \) \( + ( -2 \beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{71} \) \( + ( -\beta_{2} + 2 \beta_{4} ) q^{73} \) \( + ( -2 + 3 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{75} \) \( + ( 4 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{79} \) \( + ( 1 + 5 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 3 \beta_{4} ) q^{81} \) \( + ( -6 + 2 \beta_{1} - \beta_{2} + 2 \beta_{3} - 2 \beta_{4} ) q^{83} \) \( + ( -1 - 2 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} - \beta_{4} ) q^{85} \) \( + ( 2 + 2 \beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{87} \) \( + ( 4 \beta_{1} + \beta_{2} - 3 \beta_{3} + \beta_{4} ) q^{89} \) \( + ( -1 + 2 \beta_{1} - \beta_{2} - \beta_{4} ) q^{93} \) \( + ( 1 - \beta_{2} + 2 \beta_{3} + 3 \beta_{4} ) q^{95} \) \( + ( -2 + 3 \beta_{1} ) q^{97} \) \( + ( -7 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} ) q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(5q \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 5q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(5q \) \(\mathstrut -\mathstrut 2q^{3} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 5q^{9} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut +\mathstrut 3q^{15} \) \(\mathstrut +\mathstrut 3q^{17} \) \(\mathstrut -\mathstrut 10q^{19} \) \(\mathstrut +\mathstrut 12q^{23} \) \(\mathstrut +\mathstrut 2q^{25} \) \(\mathstrut -\mathstrut 14q^{27} \) \(\mathstrut -\mathstrut 3q^{29} \) \(\mathstrut -\mathstrut 7q^{31} \) \(\mathstrut +\mathstrut 3q^{33} \) \(\mathstrut +\mathstrut q^{37} \) \(\mathstrut +\mathstrut 7q^{39} \) \(\mathstrut -\mathstrut 5q^{41} \) \(\mathstrut +\mathstrut 13q^{43} \) \(\mathstrut +\mathstrut 3q^{45} \) \(\mathstrut -\mathstrut 9q^{47} \) \(\mathstrut +\mathstrut 9q^{51} \) \(\mathstrut -\mathstrut 3q^{53} \) \(\mathstrut -\mathstrut 9q^{55} \) \(\mathstrut -\mathstrut 11q^{57} \) \(\mathstrut +\mathstrut 3q^{59} \) \(\mathstrut -\mathstrut 16q^{61} \) \(\mathstrut +\mathstrut 3q^{65} \) \(\mathstrut +\mathstrut 19q^{67} \) \(\mathstrut -\mathstrut 24q^{69} \) \(\mathstrut -\mathstrut 12q^{71} \) \(\mathstrut -\mathstrut 4q^{73} \) \(\mathstrut -\mathstrut 8q^{75} \) \(\mathstrut +\mathstrut 28q^{79} \) \(\mathstrut +\mathstrut 5q^{81} \) \(\mathstrut -\mathstrut 18q^{83} \) \(\mathstrut -\mathstrut 15q^{85} \) \(\mathstrut +\mathstrut 6q^{87} \) \(\mathstrut +\mathstrut q^{93} \) \(\mathstrut +\mathstrut 3q^{95} \) \(\mathstrut -\mathstrut 4q^{97} \) \(\mathstrut -\mathstrut 33q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{5}\mathstrut -\mathstrut \) \(2\) \(x^{4}\mathstrut -\mathstrut \) \(8\) \(x^{3}\mathstrut +\mathstrut \) \(10\) \(x^{2}\mathstrut +\mathstrut \) \(13\) \(x\mathstrut -\mathstrut \) \(11\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{4} - 3 \nu^{3} - 2 \nu^{2} + 9 \nu - 8 \)\()/3\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{4} - 3 \nu^{3} - 5 \nu^{2} + 12 \nu + 4 \)\()/3\)
\(\beta_{4}\)\(=\)\((\)\( \nu^{4} - 11 \nu^{2} - 3 \nu + 16 \)\()/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\)\(\beta_{3}\mathstrut +\mathstrut \) \(\beta_{2}\mathstrut +\mathstrut \) \(\beta_{1}\mathstrut +\mathstrut \) \(4\)
\(\nu^{3}\)\(=\)\(\beta_{4}\mathstrut -\mathstrut \) \(3\) \(\beta_{3}\mathstrut +\mathstrut \) \(2\) \(\beta_{2}\mathstrut +\mathstrut \) \(7\) \(\beta_{1}\mathstrut +\mathstrut \) \(4\)
\(\nu^{4}\)\(=\)\(3\) \(\beta_{4}\mathstrut -\mathstrut \) \(11\) \(\beta_{3}\mathstrut +\mathstrut \) \(11\) \(\beta_{2}\mathstrut +\mathstrut \) \(14\) \(\beta_{1}\mathstrut +\mathstrut \) \(28\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.23378
1.60064
0.704110
−1.43444
−2.10409
0 −3.23378 0 −1.20798 0 0 0 7.45735 0
1.2 0 −1.60064 0 2.47347 0 0 0 −0.437946 0
1.3 0 −0.704110 0 −3.89333 0 0 0 −2.50423 0
1.4 0 1.43444 0 −1.63444 0 0 0 −0.942381 0
1.5 0 2.10409 0 1.26228 0 0 0 1.42721 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(41\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8036))\):

\(T_{3}^{5} \) \(\mathstrut +\mathstrut 2 T_{3}^{4} \) \(\mathstrut -\mathstrut 8 T_{3}^{3} \) \(\mathstrut -\mathstrut 10 T_{3}^{2} \) \(\mathstrut +\mathstrut 13 T_{3} \) \(\mathstrut +\mathstrut 11 \)
\(T_{5}^{5} \) \(\mathstrut +\mathstrut 3 T_{5}^{4} \) \(\mathstrut -\mathstrut 9 T_{5}^{3} \) \(\mathstrut -\mathstrut 20 T_{5}^{2} \) \(\mathstrut +\mathstrut 12 T_{5} \) \(\mathstrut +\mathstrut 24 \)
\(T_{11}^{5} \) \(\mathstrut -\mathstrut 21 T_{11}^{3} \) \(\mathstrut +\mathstrut 4 T_{11}^{2} \) \(\mathstrut +\mathstrut 84 T_{11} \) \(\mathstrut -\mathstrut 72 \)