Properties

Label 8031.2.a.b.1.6
Level $8031$
Weight $2$
Character 8031.1
Self dual yes
Analytic conductor $64.128$
Analytic rank $1$
Dimension $102$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8031,2,Mod(1,8031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8031.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8031 = 3 \cdot 2677 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8031.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.1278578633\)
Analytic rank: \(1\)
Dimension: \(102\)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 8031.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.63837 q^{2} -1.00000 q^{3} +4.96099 q^{4} -0.827443 q^{5} +2.63837 q^{6} +4.06107 q^{7} -7.81219 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.63837 q^{2} -1.00000 q^{3} +4.96099 q^{4} -0.827443 q^{5} +2.63837 q^{6} +4.06107 q^{7} -7.81219 q^{8} +1.00000 q^{9} +2.18310 q^{10} +1.88646 q^{11} -4.96099 q^{12} -5.96092 q^{13} -10.7146 q^{14} +0.827443 q^{15} +10.6894 q^{16} +0.243176 q^{17} -2.63837 q^{18} -3.37914 q^{19} -4.10494 q^{20} -4.06107 q^{21} -4.97718 q^{22} -7.39214 q^{23} +7.81219 q^{24} -4.31534 q^{25} +15.7271 q^{26} -1.00000 q^{27} +20.1470 q^{28} -7.38646 q^{29} -2.18310 q^{30} +4.99040 q^{31} -12.5783 q^{32} -1.88646 q^{33} -0.641588 q^{34} -3.36031 q^{35} +4.96099 q^{36} +8.85570 q^{37} +8.91541 q^{38} +5.96092 q^{39} +6.46414 q^{40} +6.50441 q^{41} +10.7146 q^{42} +11.5715 q^{43} +9.35871 q^{44} -0.827443 q^{45} +19.5032 q^{46} +0.239644 q^{47} -10.6894 q^{48} +9.49233 q^{49} +11.3855 q^{50} -0.243176 q^{51} -29.5721 q^{52} +4.82029 q^{53} +2.63837 q^{54} -1.56094 q^{55} -31.7259 q^{56} +3.37914 q^{57} +19.4882 q^{58} -10.1189 q^{59} +4.10494 q^{60} -1.06763 q^{61} -13.1665 q^{62} +4.06107 q^{63} +11.8074 q^{64} +4.93232 q^{65} +4.97718 q^{66} +15.0631 q^{67} +1.20639 q^{68} +7.39214 q^{69} +8.86573 q^{70} +8.20112 q^{71} -7.81219 q^{72} -8.32080 q^{73} -23.3646 q^{74} +4.31534 q^{75} -16.7639 q^{76} +7.66105 q^{77} -15.7271 q^{78} -2.51617 q^{79} -8.84491 q^{80} +1.00000 q^{81} -17.1610 q^{82} -7.69428 q^{83} -20.1470 q^{84} -0.201214 q^{85} -30.5300 q^{86} +7.38646 q^{87} -14.7374 q^{88} -16.3693 q^{89} +2.18310 q^{90} -24.2077 q^{91} -36.6723 q^{92} -4.99040 q^{93} -0.632268 q^{94} +2.79604 q^{95} +12.5783 q^{96} +12.3581 q^{97} -25.0443 q^{98} +1.88646 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 102 q - 6 q^{2} - 102 q^{3} + 96 q^{4} - 20 q^{5} + 6 q^{6} + 12 q^{7} - 21 q^{8} + 102 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 102 q - 6 q^{2} - 102 q^{3} + 96 q^{4} - 20 q^{5} + 6 q^{6} + 12 q^{7} - 21 q^{8} + 102 q^{9} - 16 q^{10} - 28 q^{11} - 96 q^{12} - 2 q^{13} - 41 q^{14} + 20 q^{15} + 88 q^{16} - 77 q^{17} - 6 q^{18} + 10 q^{19} - 50 q^{20} - 12 q^{21} + 24 q^{22} - 29 q^{23} + 21 q^{24} + 74 q^{25} - 45 q^{26} - 102 q^{27} + 19 q^{28} - 68 q^{29} + 16 q^{30} - 29 q^{31} - 48 q^{32} + 28 q^{33} - 19 q^{34} - 49 q^{35} + 96 q^{36} + 4 q^{37} - 44 q^{38} + 2 q^{39} - 41 q^{40} - 122 q^{41} + 41 q^{42} + 85 q^{43} - 86 q^{44} - 20 q^{45} - 28 q^{46} - 39 q^{47} - 88 q^{48} + 24 q^{49} - 37 q^{50} + 77 q^{51} + 8 q^{52} - 37 q^{53} + 6 q^{54} - 13 q^{55} - 130 q^{56} - 10 q^{57} + 17 q^{58} - 58 q^{59} + 50 q^{60} - 114 q^{61} - 64 q^{62} + 12 q^{63} + 47 q^{64} - 92 q^{65} - 24 q^{66} + 121 q^{67} - 138 q^{68} + 29 q^{69} - 2 q^{70} - 67 q^{71} - 21 q^{72} - 72 q^{73} - 111 q^{74} - 74 q^{75} - 17 q^{76} - 57 q^{77} + 45 q^{78} - 24 q^{79} - 97 q^{80} + 102 q^{81} - q^{82} - 78 q^{83} - 19 q^{84} - 24 q^{85} - 80 q^{86} + 68 q^{87} + 54 q^{88} - 176 q^{89} - 16 q^{90} - 3 q^{91} - 82 q^{92} + 29 q^{93} - 41 q^{94} - 90 q^{95} + 48 q^{96} - 77 q^{97} - 48 q^{98} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.63837 −1.86561 −0.932804 0.360383i \(-0.882646\pi\)
−0.932804 + 0.360383i \(0.882646\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.96099 2.48050
\(5\) −0.827443 −0.370044 −0.185022 0.982734i \(-0.559236\pi\)
−0.185022 + 0.982734i \(0.559236\pi\)
\(6\) 2.63837 1.07711
\(7\) 4.06107 1.53494 0.767471 0.641084i \(-0.221515\pi\)
0.767471 + 0.641084i \(0.221515\pi\)
\(8\) −7.81219 −2.76203
\(9\) 1.00000 0.333333
\(10\) 2.18310 0.690357
\(11\) 1.88646 0.568789 0.284395 0.958707i \(-0.408207\pi\)
0.284395 + 0.958707i \(0.408207\pi\)
\(12\) −4.96099 −1.43211
\(13\) −5.96092 −1.65326 −0.826631 0.562745i \(-0.809745\pi\)
−0.826631 + 0.562745i \(0.809745\pi\)
\(14\) −10.7146 −2.86360
\(15\) 0.827443 0.213645
\(16\) 10.6894 2.67236
\(17\) 0.243176 0.0589789 0.0294894 0.999565i \(-0.490612\pi\)
0.0294894 + 0.999565i \(0.490612\pi\)
\(18\) −2.63837 −0.621870
\(19\) −3.37914 −0.775227 −0.387614 0.921822i \(-0.626700\pi\)
−0.387614 + 0.921822i \(0.626700\pi\)
\(20\) −4.10494 −0.917892
\(21\) −4.06107 −0.886199
\(22\) −4.97718 −1.06114
\(23\) −7.39214 −1.54137 −0.770684 0.637218i \(-0.780085\pi\)
−0.770684 + 0.637218i \(0.780085\pi\)
\(24\) 7.81219 1.59466
\(25\) −4.31534 −0.863068
\(26\) 15.7271 3.08434
\(27\) −1.00000 −0.192450
\(28\) 20.1470 3.80742
\(29\) −7.38646 −1.37163 −0.685816 0.727775i \(-0.740554\pi\)
−0.685816 + 0.727775i \(0.740554\pi\)
\(30\) −2.18310 −0.398578
\(31\) 4.99040 0.896303 0.448151 0.893958i \(-0.352083\pi\)
0.448151 + 0.893958i \(0.352083\pi\)
\(32\) −12.5783 −2.22356
\(33\) −1.88646 −0.328391
\(34\) −0.641588 −0.110031
\(35\) −3.36031 −0.567996
\(36\) 4.96099 0.826832
\(37\) 8.85570 1.45587 0.727934 0.685647i \(-0.240481\pi\)
0.727934 + 0.685647i \(0.240481\pi\)
\(38\) 8.91541 1.44627
\(39\) 5.96092 0.954511
\(40\) 6.46414 1.02207
\(41\) 6.50441 1.01582 0.507909 0.861411i \(-0.330419\pi\)
0.507909 + 0.861411i \(0.330419\pi\)
\(42\) 10.7146 1.65330
\(43\) 11.5715 1.76464 0.882322 0.470646i \(-0.155979\pi\)
0.882322 + 0.470646i \(0.155979\pi\)
\(44\) 9.35871 1.41088
\(45\) −0.827443 −0.123348
\(46\) 19.5032 2.87559
\(47\) 0.239644 0.0349556 0.0174778 0.999847i \(-0.494436\pi\)
0.0174778 + 0.999847i \(0.494436\pi\)
\(48\) −10.6894 −1.54289
\(49\) 9.49233 1.35605
\(50\) 11.3855 1.61015
\(51\) −0.243176 −0.0340515
\(52\) −29.5721 −4.10091
\(53\) 4.82029 0.662118 0.331059 0.943610i \(-0.392594\pi\)
0.331059 + 0.943610i \(0.392594\pi\)
\(54\) 2.63837 0.359037
\(55\) −1.56094 −0.210477
\(56\) −31.7259 −4.23955
\(57\) 3.37914 0.447578
\(58\) 19.4882 2.55893
\(59\) −10.1189 −1.31737 −0.658687 0.752417i \(-0.728888\pi\)
−0.658687 + 0.752417i \(0.728888\pi\)
\(60\) 4.10494 0.529945
\(61\) −1.06763 −0.136697 −0.0683483 0.997662i \(-0.521773\pi\)
−0.0683483 + 0.997662i \(0.521773\pi\)
\(62\) −13.1665 −1.67215
\(63\) 4.06107 0.511647
\(64\) 11.8074 1.47592
\(65\) 4.93232 0.611779
\(66\) 4.97718 0.612648
\(67\) 15.0631 1.84026 0.920128 0.391618i \(-0.128085\pi\)
0.920128 + 0.391618i \(0.128085\pi\)
\(68\) 1.20639 0.146297
\(69\) 7.39214 0.889909
\(70\) 8.86573 1.05966
\(71\) 8.20112 0.973294 0.486647 0.873599i \(-0.338220\pi\)
0.486647 + 0.873599i \(0.338220\pi\)
\(72\) −7.81219 −0.920675
\(73\) −8.32080 −0.973876 −0.486938 0.873436i \(-0.661886\pi\)
−0.486938 + 0.873436i \(0.661886\pi\)
\(74\) −23.3646 −2.71608
\(75\) 4.31534 0.498292
\(76\) −16.7639 −1.92295
\(77\) 7.66105 0.873058
\(78\) −15.7271 −1.78074
\(79\) −2.51617 −0.283092 −0.141546 0.989932i \(-0.545207\pi\)
−0.141546 + 0.989932i \(0.545207\pi\)
\(80\) −8.84491 −0.988891
\(81\) 1.00000 0.111111
\(82\) −17.1610 −1.89512
\(83\) −7.69428 −0.844557 −0.422278 0.906466i \(-0.638770\pi\)
−0.422278 + 0.906466i \(0.638770\pi\)
\(84\) −20.1470 −2.19821
\(85\) −0.201214 −0.0218248
\(86\) −30.5300 −3.29213
\(87\) 7.38646 0.791912
\(88\) −14.7374 −1.57101
\(89\) −16.3693 −1.73515 −0.867573 0.497309i \(-0.834321\pi\)
−0.867573 + 0.497309i \(0.834321\pi\)
\(90\) 2.18310 0.230119
\(91\) −24.2077 −2.53766
\(92\) −36.6723 −3.82336
\(93\) −4.99040 −0.517481
\(94\) −0.632268 −0.0652135
\(95\) 2.79604 0.286868
\(96\) 12.5783 1.28377
\(97\) 12.3581 1.25478 0.627390 0.778705i \(-0.284123\pi\)
0.627390 + 0.778705i \(0.284123\pi\)
\(98\) −25.0443 −2.52985
\(99\) 1.88646 0.189596
\(100\) −21.4084 −2.14084
\(101\) 8.60943 0.856671 0.428335 0.903620i \(-0.359100\pi\)
0.428335 + 0.903620i \(0.359100\pi\)
\(102\) 0.641588 0.0635267
\(103\) 7.83562 0.772066 0.386033 0.922485i \(-0.373845\pi\)
0.386033 + 0.922485i \(0.373845\pi\)
\(104\) 46.5678 4.56635
\(105\) 3.36031 0.327932
\(106\) −12.7177 −1.23525
\(107\) 14.5580 1.40737 0.703687 0.710510i \(-0.251536\pi\)
0.703687 + 0.710510i \(0.251536\pi\)
\(108\) −4.96099 −0.477372
\(109\) −1.68998 −0.161871 −0.0809355 0.996719i \(-0.525791\pi\)
−0.0809355 + 0.996719i \(0.525791\pi\)
\(110\) 4.11833 0.392667
\(111\) −8.85570 −0.840546
\(112\) 43.4107 4.10192
\(113\) 13.1550 1.23752 0.618761 0.785579i \(-0.287635\pi\)
0.618761 + 0.785579i \(0.287635\pi\)
\(114\) −8.91541 −0.835005
\(115\) 6.11657 0.570374
\(116\) −36.6442 −3.40233
\(117\) −5.96092 −0.551087
\(118\) 26.6975 2.45770
\(119\) 0.987556 0.0905291
\(120\) −6.46414 −0.590093
\(121\) −7.44127 −0.676479
\(122\) 2.81681 0.255022
\(123\) −6.50441 −0.586483
\(124\) 24.7573 2.22327
\(125\) 7.70791 0.689417
\(126\) −10.7146 −0.954534
\(127\) 7.07813 0.628083 0.314041 0.949409i \(-0.398317\pi\)
0.314041 + 0.949409i \(0.398317\pi\)
\(128\) −5.99560 −0.529941
\(129\) −11.5715 −1.01882
\(130\) −13.0133 −1.14134
\(131\) −6.16966 −0.539046 −0.269523 0.962994i \(-0.586866\pi\)
−0.269523 + 0.962994i \(0.586866\pi\)
\(132\) −9.35871 −0.814571
\(133\) −13.7229 −1.18993
\(134\) −39.7421 −3.43320
\(135\) 0.827443 0.0712150
\(136\) −1.89974 −0.162901
\(137\) −4.44335 −0.379621 −0.189810 0.981821i \(-0.560787\pi\)
−0.189810 + 0.981821i \(0.560787\pi\)
\(138\) −19.5032 −1.66022
\(139\) −10.0794 −0.854923 −0.427462 0.904034i \(-0.640592\pi\)
−0.427462 + 0.904034i \(0.640592\pi\)
\(140\) −16.6705 −1.40891
\(141\) −0.239644 −0.0201816
\(142\) −21.6376 −1.81579
\(143\) −11.2450 −0.940357
\(144\) 10.6894 0.890787
\(145\) 6.11188 0.507564
\(146\) 21.9534 1.81687
\(147\) −9.49233 −0.782914
\(148\) 43.9331 3.61128
\(149\) −3.15306 −0.258308 −0.129154 0.991625i \(-0.541226\pi\)
−0.129154 + 0.991625i \(0.541226\pi\)
\(150\) −11.3855 −0.929618
\(151\) −19.2254 −1.56454 −0.782270 0.622940i \(-0.785938\pi\)
−0.782270 + 0.622940i \(0.785938\pi\)
\(152\) 26.3984 2.14120
\(153\) 0.243176 0.0196596
\(154\) −20.2127 −1.62878
\(155\) −4.12927 −0.331671
\(156\) 29.5721 2.36766
\(157\) 16.1182 1.28638 0.643188 0.765708i \(-0.277611\pi\)
0.643188 + 0.765708i \(0.277611\pi\)
\(158\) 6.63860 0.528138
\(159\) −4.82029 −0.382274
\(160\) 10.4079 0.822813
\(161\) −30.0200 −2.36591
\(162\) −2.63837 −0.207290
\(163\) −6.25081 −0.489601 −0.244800 0.969573i \(-0.578722\pi\)
−0.244800 + 0.969573i \(0.578722\pi\)
\(164\) 32.2683 2.51973
\(165\) 1.56094 0.121519
\(166\) 20.3003 1.57561
\(167\) −16.2848 −1.26016 −0.630078 0.776532i \(-0.716977\pi\)
−0.630078 + 0.776532i \(0.716977\pi\)
\(168\) 31.7259 2.44770
\(169\) 22.5326 1.73327
\(170\) 0.530878 0.0407165
\(171\) −3.37914 −0.258409
\(172\) 57.4063 4.37719
\(173\) 5.23258 0.397825 0.198913 0.980017i \(-0.436259\pi\)
0.198913 + 0.980017i \(0.436259\pi\)
\(174\) −19.4882 −1.47740
\(175\) −17.5249 −1.32476
\(176\) 20.1652 1.52001
\(177\) 10.1189 0.760586
\(178\) 43.1884 3.23710
\(179\) 2.14408 0.160256 0.0801281 0.996785i \(-0.474467\pi\)
0.0801281 + 0.996785i \(0.474467\pi\)
\(180\) −4.10494 −0.305964
\(181\) −7.41618 −0.551240 −0.275620 0.961267i \(-0.588883\pi\)
−0.275620 + 0.961267i \(0.588883\pi\)
\(182\) 63.8690 4.73428
\(183\) 1.06763 0.0789218
\(184\) 57.7488 4.25730
\(185\) −7.32759 −0.538735
\(186\) 13.1665 0.965416
\(187\) 0.458742 0.0335465
\(188\) 1.18887 0.0867073
\(189\) −4.06107 −0.295400
\(190\) −7.37699 −0.535183
\(191\) −16.7886 −1.21478 −0.607390 0.794404i \(-0.707784\pi\)
−0.607390 + 0.794404i \(0.707784\pi\)
\(192\) −11.8074 −0.852126
\(193\) 11.4871 0.826860 0.413430 0.910536i \(-0.364331\pi\)
0.413430 + 0.910536i \(0.364331\pi\)
\(194\) −32.6054 −2.34093
\(195\) −4.93232 −0.353211
\(196\) 47.0914 3.36367
\(197\) −23.2148 −1.65399 −0.826993 0.562212i \(-0.809951\pi\)
−0.826993 + 0.562212i \(0.809951\pi\)
\(198\) −4.97718 −0.353713
\(199\) −21.1585 −1.49989 −0.749944 0.661501i \(-0.769920\pi\)
−0.749944 + 0.661501i \(0.769920\pi\)
\(200\) 33.7122 2.38381
\(201\) −15.0631 −1.06247
\(202\) −22.7149 −1.59821
\(203\) −29.9970 −2.10537
\(204\) −1.20639 −0.0844645
\(205\) −5.38203 −0.375897
\(206\) −20.6733 −1.44037
\(207\) −7.39214 −0.513789
\(208\) −63.7190 −4.41811
\(209\) −6.37461 −0.440941
\(210\) −8.86573 −0.611794
\(211\) 4.29296 0.295540 0.147770 0.989022i \(-0.452791\pi\)
0.147770 + 0.989022i \(0.452791\pi\)
\(212\) 23.9134 1.64238
\(213\) −8.20112 −0.561931
\(214\) −38.4093 −2.62561
\(215\) −9.57479 −0.652996
\(216\) 7.81219 0.531552
\(217\) 20.2664 1.37577
\(218\) 4.45880 0.301988
\(219\) 8.32080 0.562268
\(220\) −7.74380 −0.522087
\(221\) −1.44955 −0.0975075
\(222\) 23.3646 1.56813
\(223\) −9.66959 −0.647523 −0.323762 0.946139i \(-0.604948\pi\)
−0.323762 + 0.946139i \(0.604948\pi\)
\(224\) −51.0816 −3.41303
\(225\) −4.31534 −0.287689
\(226\) −34.7079 −2.30873
\(227\) 16.2892 1.08115 0.540575 0.841296i \(-0.318207\pi\)
0.540575 + 0.841296i \(0.318207\pi\)
\(228\) 16.7639 1.11021
\(229\) 8.28068 0.547203 0.273601 0.961843i \(-0.411785\pi\)
0.273601 + 0.961843i \(0.411785\pi\)
\(230\) −16.1378 −1.06409
\(231\) −7.66105 −0.504060
\(232\) 57.7044 3.78848
\(233\) −12.7656 −0.836304 −0.418152 0.908377i \(-0.637322\pi\)
−0.418152 + 0.908377i \(0.637322\pi\)
\(234\) 15.7271 1.02811
\(235\) −0.198291 −0.0129351
\(236\) −50.2000 −3.26774
\(237\) 2.51617 0.163443
\(238\) −2.60554 −0.168892
\(239\) −9.05736 −0.585872 −0.292936 0.956132i \(-0.594632\pi\)
−0.292936 + 0.956132i \(0.594632\pi\)
\(240\) 8.84491 0.570937
\(241\) 18.2228 1.17383 0.586916 0.809648i \(-0.300342\pi\)
0.586916 + 0.809648i \(0.300342\pi\)
\(242\) 19.6328 1.26205
\(243\) −1.00000 −0.0641500
\(244\) −5.29652 −0.339075
\(245\) −7.85436 −0.501797
\(246\) 17.1610 1.09415
\(247\) 20.1428 1.28165
\(248\) −38.9860 −2.47561
\(249\) 7.69428 0.487605
\(250\) −20.3363 −1.28618
\(251\) −5.59605 −0.353219 −0.176610 0.984281i \(-0.556513\pi\)
−0.176610 + 0.984281i \(0.556513\pi\)
\(252\) 20.1470 1.26914
\(253\) −13.9450 −0.876713
\(254\) −18.6747 −1.17176
\(255\) 0.201214 0.0126005
\(256\) −7.79619 −0.487262
\(257\) −6.26550 −0.390831 −0.195416 0.980721i \(-0.562606\pi\)
−0.195416 + 0.980721i \(0.562606\pi\)
\(258\) 30.5300 1.90072
\(259\) 35.9637 2.23467
\(260\) 24.4692 1.51752
\(261\) −7.38646 −0.457211
\(262\) 16.2778 1.00565
\(263\) −1.97108 −0.121542 −0.0607710 0.998152i \(-0.519356\pi\)
−0.0607710 + 0.998152i \(0.519356\pi\)
\(264\) 14.7374 0.907023
\(265\) −3.98852 −0.245013
\(266\) 36.2061 2.21994
\(267\) 16.3693 1.00179
\(268\) 74.7281 4.56475
\(269\) 28.0222 1.70855 0.854273 0.519825i \(-0.174003\pi\)
0.854273 + 0.519825i \(0.174003\pi\)
\(270\) −2.18310 −0.132859
\(271\) −11.8594 −0.720404 −0.360202 0.932874i \(-0.617292\pi\)
−0.360202 + 0.932874i \(0.617292\pi\)
\(272\) 2.59942 0.157613
\(273\) 24.2077 1.46512
\(274\) 11.7232 0.708224
\(275\) −8.14071 −0.490903
\(276\) 36.6723 2.20742
\(277\) 32.6523 1.96189 0.980943 0.194296i \(-0.0622422\pi\)
0.980943 + 0.194296i \(0.0622422\pi\)
\(278\) 26.5932 1.59495
\(279\) 4.99040 0.298768
\(280\) 26.2514 1.56882
\(281\) −26.5588 −1.58436 −0.792182 0.610284i \(-0.791055\pi\)
−0.792182 + 0.610284i \(0.791055\pi\)
\(282\) 0.632268 0.0376510
\(283\) −15.8232 −0.940594 −0.470297 0.882508i \(-0.655853\pi\)
−0.470297 + 0.882508i \(0.655853\pi\)
\(284\) 40.6857 2.41425
\(285\) −2.79604 −0.165623
\(286\) 29.6686 1.75434
\(287\) 26.4149 1.55922
\(288\) −12.5783 −0.741186
\(289\) −16.9409 −0.996521
\(290\) −16.1254 −0.946915
\(291\) −12.3581 −0.724447
\(292\) −41.2794 −2.41570
\(293\) −25.7679 −1.50538 −0.752688 0.658378i \(-0.771243\pi\)
−0.752688 + 0.658378i \(0.771243\pi\)
\(294\) 25.0443 1.46061
\(295\) 8.37285 0.487486
\(296\) −69.1824 −4.02115
\(297\) −1.88646 −0.109464
\(298\) 8.31893 0.481903
\(299\) 44.0640 2.54828
\(300\) 21.4084 1.23601
\(301\) 46.9929 2.70863
\(302\) 50.7236 2.91882
\(303\) −8.60943 −0.494599
\(304\) −36.1211 −2.07169
\(305\) 0.883406 0.0505837
\(306\) −0.641588 −0.0366772
\(307\) −18.7290 −1.06892 −0.534461 0.845193i \(-0.679485\pi\)
−0.534461 + 0.845193i \(0.679485\pi\)
\(308\) 38.0064 2.16562
\(309\) −7.83562 −0.445753
\(310\) 10.8945 0.618769
\(311\) 4.23513 0.240152 0.120076 0.992765i \(-0.461686\pi\)
0.120076 + 0.992765i \(0.461686\pi\)
\(312\) −46.5678 −2.63638
\(313\) −9.80629 −0.554284 −0.277142 0.960829i \(-0.589387\pi\)
−0.277142 + 0.960829i \(0.589387\pi\)
\(314\) −42.5259 −2.39987
\(315\) −3.36031 −0.189332
\(316\) −12.4827 −0.702208
\(317\) 29.5952 1.66223 0.831115 0.556101i \(-0.187703\pi\)
0.831115 + 0.556101i \(0.187703\pi\)
\(318\) 12.7177 0.713173
\(319\) −13.9343 −0.780169
\(320\) −9.76995 −0.546157
\(321\) −14.5580 −0.812548
\(322\) 79.2039 4.41386
\(323\) −0.821725 −0.0457220
\(324\) 4.96099 0.275611
\(325\) 25.7234 1.42688
\(326\) 16.4919 0.913404
\(327\) 1.68998 0.0934563
\(328\) −50.8137 −2.80572
\(329\) 0.973211 0.0536549
\(330\) −4.11833 −0.226707
\(331\) −10.7653 −0.591715 −0.295857 0.955232i \(-0.595605\pi\)
−0.295857 + 0.955232i \(0.595605\pi\)
\(332\) −38.1712 −2.09492
\(333\) 8.85570 0.485290
\(334\) 42.9653 2.35096
\(335\) −12.4639 −0.680975
\(336\) −43.4107 −2.36825
\(337\) −33.8666 −1.84483 −0.922416 0.386197i \(-0.873789\pi\)
−0.922416 + 0.386197i \(0.873789\pi\)
\(338\) −59.4492 −3.23361
\(339\) −13.1550 −0.714484
\(340\) −0.998223 −0.0541362
\(341\) 9.41419 0.509807
\(342\) 8.91541 0.482090
\(343\) 10.1215 0.546511
\(344\) −90.3991 −4.87399
\(345\) −6.11657 −0.329305
\(346\) −13.8055 −0.742187
\(347\) 0.721891 0.0387531 0.0193766 0.999812i \(-0.493832\pi\)
0.0193766 + 0.999812i \(0.493832\pi\)
\(348\) 36.6442 1.96433
\(349\) 6.06212 0.324498 0.162249 0.986750i \(-0.448125\pi\)
0.162249 + 0.986750i \(0.448125\pi\)
\(350\) 46.2372 2.47148
\(351\) 5.96092 0.318170
\(352\) −23.7285 −1.26473
\(353\) −4.28017 −0.227810 −0.113905 0.993492i \(-0.536336\pi\)
−0.113905 + 0.993492i \(0.536336\pi\)
\(354\) −26.6975 −1.41896
\(355\) −6.78596 −0.360161
\(356\) −81.2082 −4.30402
\(357\) −0.987556 −0.0522670
\(358\) −5.65688 −0.298975
\(359\) 17.8955 0.944489 0.472245 0.881468i \(-0.343444\pi\)
0.472245 + 0.881468i \(0.343444\pi\)
\(360\) 6.46414 0.340690
\(361\) −7.58144 −0.399023
\(362\) 19.5666 1.02840
\(363\) 7.44127 0.390565
\(364\) −120.094 −6.29466
\(365\) 6.88499 0.360377
\(366\) −2.81681 −0.147237
\(367\) −34.9517 −1.82446 −0.912231 0.409675i \(-0.865642\pi\)
−0.912231 + 0.409675i \(0.865642\pi\)
\(368\) −79.0179 −4.11909
\(369\) 6.50441 0.338606
\(370\) 19.3329 1.00507
\(371\) 19.5756 1.01631
\(372\) −24.7573 −1.28361
\(373\) −1.75391 −0.0908140 −0.0454070 0.998969i \(-0.514458\pi\)
−0.0454070 + 0.998969i \(0.514458\pi\)
\(374\) −1.21033 −0.0625847
\(375\) −7.70791 −0.398035
\(376\) −1.87214 −0.0965483
\(377\) 44.0301 2.26767
\(378\) 10.7146 0.551100
\(379\) 10.3311 0.530672 0.265336 0.964156i \(-0.414517\pi\)
0.265336 + 0.964156i \(0.414517\pi\)
\(380\) 13.8711 0.711575
\(381\) −7.07813 −0.362624
\(382\) 44.2945 2.26631
\(383\) 8.77749 0.448509 0.224254 0.974531i \(-0.428005\pi\)
0.224254 + 0.974531i \(0.428005\pi\)
\(384\) 5.99560 0.305962
\(385\) −6.33909 −0.323070
\(386\) −30.3072 −1.54260
\(387\) 11.5715 0.588215
\(388\) 61.3087 3.11248
\(389\) −11.0917 −0.562370 −0.281185 0.959654i \(-0.590727\pi\)
−0.281185 + 0.959654i \(0.590727\pi\)
\(390\) 13.0133 0.658953
\(391\) −1.79759 −0.0909081
\(392\) −74.1558 −3.74544
\(393\) 6.16966 0.311218
\(394\) 61.2492 3.08569
\(395\) 2.08199 0.104756
\(396\) 9.35871 0.470293
\(397\) −17.4436 −0.875471 −0.437736 0.899104i \(-0.644219\pi\)
−0.437736 + 0.899104i \(0.644219\pi\)
\(398\) 55.8240 2.79820
\(399\) 13.7229 0.687006
\(400\) −46.1286 −2.30643
\(401\) −4.41147 −0.220298 −0.110149 0.993915i \(-0.535133\pi\)
−0.110149 + 0.993915i \(0.535133\pi\)
\(402\) 39.7421 1.98216
\(403\) −29.7474 −1.48182
\(404\) 42.7113 2.12497
\(405\) −0.827443 −0.0411160
\(406\) 79.1431 3.92781
\(407\) 16.7059 0.828082
\(408\) 1.89974 0.0940510
\(409\) −3.61264 −0.178633 −0.0893167 0.996003i \(-0.528468\pi\)
−0.0893167 + 0.996003i \(0.528468\pi\)
\(410\) 14.1998 0.701277
\(411\) 4.44335 0.219174
\(412\) 38.8724 1.91511
\(413\) −41.0938 −2.02209
\(414\) 19.5032 0.958530
\(415\) 6.36658 0.312523
\(416\) 74.9785 3.67612
\(417\) 10.0794 0.493590
\(418\) 16.8186 0.822623
\(419\) 34.5013 1.68550 0.842750 0.538305i \(-0.180935\pi\)
0.842750 + 0.538305i \(0.180935\pi\)
\(420\) 16.6705 0.813435
\(421\) −10.4342 −0.508532 −0.254266 0.967134i \(-0.581834\pi\)
−0.254266 + 0.967134i \(0.581834\pi\)
\(422\) −11.3264 −0.551361
\(423\) 0.239644 0.0116519
\(424\) −37.6570 −1.82879
\(425\) −1.04939 −0.0509028
\(426\) 21.6376 1.04834
\(427\) −4.33574 −0.209821
\(428\) 72.2221 3.49098
\(429\) 11.2450 0.542915
\(430\) 25.2618 1.21823
\(431\) −6.61003 −0.318394 −0.159197 0.987247i \(-0.550890\pi\)
−0.159197 + 0.987247i \(0.550890\pi\)
\(432\) −10.6894 −0.514296
\(433\) −21.7588 −1.04566 −0.522832 0.852436i \(-0.675124\pi\)
−0.522832 + 0.852436i \(0.675124\pi\)
\(434\) −53.4702 −2.56665
\(435\) −6.11188 −0.293042
\(436\) −8.38399 −0.401520
\(437\) 24.9791 1.19491
\(438\) −21.9534 −1.04897
\(439\) −22.8684 −1.09145 −0.545724 0.837965i \(-0.683745\pi\)
−0.545724 + 0.837965i \(0.683745\pi\)
\(440\) 12.1943 0.581342
\(441\) 9.49233 0.452016
\(442\) 3.82446 0.181911
\(443\) 17.9159 0.851212 0.425606 0.904909i \(-0.360061\pi\)
0.425606 + 0.904909i \(0.360061\pi\)
\(444\) −43.9331 −2.08497
\(445\) 13.5447 0.642080
\(446\) 25.5119 1.20803
\(447\) 3.15306 0.149134
\(448\) 47.9507 2.26546
\(449\) −40.2259 −1.89838 −0.949189 0.314707i \(-0.898094\pi\)
−0.949189 + 0.314707i \(0.898094\pi\)
\(450\) 11.3855 0.536715
\(451\) 12.2703 0.577786
\(452\) 65.2621 3.06967
\(453\) 19.2254 0.903287
\(454\) −42.9768 −2.01700
\(455\) 20.0305 0.939046
\(456\) −26.3984 −1.23622
\(457\) −10.4753 −0.490012 −0.245006 0.969522i \(-0.578790\pi\)
−0.245006 + 0.969522i \(0.578790\pi\)
\(458\) −21.8475 −1.02087
\(459\) −0.243176 −0.0113505
\(460\) 30.3443 1.41481
\(461\) 3.67127 0.170988 0.0854941 0.996339i \(-0.472753\pi\)
0.0854941 + 0.996339i \(0.472753\pi\)
\(462\) 20.2127 0.940379
\(463\) 2.65603 0.123436 0.0617181 0.998094i \(-0.480342\pi\)
0.0617181 + 0.998094i \(0.480342\pi\)
\(464\) −78.9572 −3.66550
\(465\) 4.12927 0.191490
\(466\) 33.6804 1.56022
\(467\) −2.15594 −0.0997651 −0.0498825 0.998755i \(-0.515885\pi\)
−0.0498825 + 0.998755i \(0.515885\pi\)
\(468\) −29.5721 −1.36697
\(469\) 61.1725 2.82469
\(470\) 0.523166 0.0241319
\(471\) −16.1182 −0.742690
\(472\) 79.0510 3.63862
\(473\) 21.8293 1.00371
\(474\) −6.63860 −0.304921
\(475\) 14.5821 0.669073
\(476\) 4.89926 0.224557
\(477\) 4.82029 0.220706
\(478\) 23.8967 1.09301
\(479\) 2.41594 0.110387 0.0551935 0.998476i \(-0.482422\pi\)
0.0551935 + 0.998476i \(0.482422\pi\)
\(480\) −10.4079 −0.475052
\(481\) −52.7881 −2.40693
\(482\) −48.0784 −2.18991
\(483\) 30.0200 1.36596
\(484\) −36.9161 −1.67800
\(485\) −10.2257 −0.464323
\(486\) 2.63837 0.119679
\(487\) −14.8941 −0.674918 −0.337459 0.941340i \(-0.609567\pi\)
−0.337459 + 0.941340i \(0.609567\pi\)
\(488\) 8.34056 0.377559
\(489\) 6.25081 0.282671
\(490\) 20.7227 0.936156
\(491\) −1.98420 −0.0895456 −0.0447728 0.998997i \(-0.514256\pi\)
−0.0447728 + 0.998997i \(0.514256\pi\)
\(492\) −32.2683 −1.45477
\(493\) −1.79621 −0.0808973
\(494\) −53.1440 −2.39106
\(495\) −1.56094 −0.0701589
\(496\) 53.3446 2.39525
\(497\) 33.3054 1.49395
\(498\) −20.3003 −0.909680
\(499\) 9.75556 0.436719 0.218359 0.975868i \(-0.429930\pi\)
0.218359 + 0.975868i \(0.429930\pi\)
\(500\) 38.2389 1.71009
\(501\) 16.2848 0.727551
\(502\) 14.7644 0.658969
\(503\) −16.9305 −0.754894 −0.377447 0.926031i \(-0.623198\pi\)
−0.377447 + 0.926031i \(0.623198\pi\)
\(504\) −31.7259 −1.41318
\(505\) −7.12382 −0.317006
\(506\) 36.7920 1.63560
\(507\) −22.5326 −1.00071
\(508\) 35.1145 1.55796
\(509\) −4.48525 −0.198805 −0.0994025 0.995047i \(-0.531693\pi\)
−0.0994025 + 0.995047i \(0.531693\pi\)
\(510\) −0.530878 −0.0235077
\(511\) −33.7914 −1.49484
\(512\) 32.5604 1.43898
\(513\) 3.37914 0.149193
\(514\) 16.5307 0.729138
\(515\) −6.48353 −0.285698
\(516\) −57.4063 −2.52717
\(517\) 0.452078 0.0198824
\(518\) −94.8855 −4.16903
\(519\) −5.23258 −0.229685
\(520\) −38.5322 −1.68975
\(521\) 18.1359 0.794549 0.397274 0.917700i \(-0.369956\pi\)
0.397274 + 0.917700i \(0.369956\pi\)
\(522\) 19.4882 0.852976
\(523\) −14.7684 −0.645777 −0.322889 0.946437i \(-0.604654\pi\)
−0.322889 + 0.946437i \(0.604654\pi\)
\(524\) −30.6076 −1.33710
\(525\) 17.5249 0.764850
\(526\) 5.20044 0.226750
\(527\) 1.21355 0.0528629
\(528\) −20.1652 −0.877578
\(529\) 31.6437 1.37581
\(530\) 10.5232 0.457097
\(531\) −10.1189 −0.439125
\(532\) −68.0793 −2.95161
\(533\) −38.7723 −1.67941
\(534\) −43.1884 −1.86894
\(535\) −12.0459 −0.520790
\(536\) −117.676 −5.08283
\(537\) −2.14408 −0.0925240
\(538\) −73.9330 −3.18748
\(539\) 17.9069 0.771305
\(540\) 4.10494 0.176648
\(541\) 33.2609 1.43000 0.714998 0.699126i \(-0.246428\pi\)
0.714998 + 0.699126i \(0.246428\pi\)
\(542\) 31.2894 1.34399
\(543\) 7.41618 0.318259
\(544\) −3.05875 −0.131143
\(545\) 1.39836 0.0598994
\(546\) −63.8690 −2.73334
\(547\) −20.6754 −0.884014 −0.442007 0.897012i \(-0.645733\pi\)
−0.442007 + 0.897012i \(0.645733\pi\)
\(548\) −22.0434 −0.941648
\(549\) −1.06763 −0.0455655
\(550\) 21.4782 0.915834
\(551\) 24.9599 1.06333
\(552\) −57.7488 −2.45795
\(553\) −10.2184 −0.434529
\(554\) −86.1488 −3.66011
\(555\) 7.32759 0.311039
\(556\) −50.0038 −2.12063
\(557\) 41.4328 1.75556 0.877782 0.479060i \(-0.159022\pi\)
0.877782 + 0.479060i \(0.159022\pi\)
\(558\) −13.1665 −0.557383
\(559\) −68.9771 −2.91742
\(560\) −35.9198 −1.51789
\(561\) −0.458742 −0.0193681
\(562\) 70.0719 2.95580
\(563\) −9.09415 −0.383273 −0.191636 0.981466i \(-0.561379\pi\)
−0.191636 + 0.981466i \(0.561379\pi\)
\(564\) −1.18887 −0.0500605
\(565\) −10.8851 −0.457938
\(566\) 41.7475 1.75478
\(567\) 4.06107 0.170549
\(568\) −64.0687 −2.68826
\(569\) −21.1481 −0.886576 −0.443288 0.896379i \(-0.646188\pi\)
−0.443288 + 0.896379i \(0.646188\pi\)
\(570\) 7.37699 0.308988
\(571\) 24.5179 1.02604 0.513020 0.858377i \(-0.328527\pi\)
0.513020 + 0.858377i \(0.328527\pi\)
\(572\) −55.7865 −2.33255
\(573\) 16.7886 0.701354
\(574\) −69.6923 −2.90890
\(575\) 31.8996 1.33030
\(576\) 11.8074 0.491975
\(577\) 2.07461 0.0863669 0.0431835 0.999067i \(-0.486250\pi\)
0.0431835 + 0.999067i \(0.486250\pi\)
\(578\) 44.6963 1.85912
\(579\) −11.4871 −0.477388
\(580\) 30.3210 1.25901
\(581\) −31.2470 −1.29635
\(582\) 32.6054 1.35154
\(583\) 9.09328 0.376605
\(584\) 65.0037 2.68987
\(585\) 4.93232 0.203926
\(586\) 67.9852 2.80844
\(587\) −33.7535 −1.39316 −0.696578 0.717481i \(-0.745295\pi\)
−0.696578 + 0.717481i \(0.745295\pi\)
\(588\) −47.0914 −1.94201
\(589\) −16.8632 −0.694838
\(590\) −22.0907 −0.909458
\(591\) 23.2148 0.954930
\(592\) 94.6626 3.89061
\(593\) 38.8411 1.59501 0.797506 0.603311i \(-0.206152\pi\)
0.797506 + 0.603311i \(0.206152\pi\)
\(594\) 4.97718 0.204216
\(595\) −0.817147 −0.0334997
\(596\) −15.6423 −0.640733
\(597\) 21.1585 0.865961
\(598\) −116.257 −4.75410
\(599\) −14.1483 −0.578084 −0.289042 0.957316i \(-0.593337\pi\)
−0.289042 + 0.957316i \(0.593337\pi\)
\(600\) −33.7122 −1.37630
\(601\) 21.1768 0.863821 0.431911 0.901916i \(-0.357840\pi\)
0.431911 + 0.901916i \(0.357840\pi\)
\(602\) −123.985 −5.05324
\(603\) 15.0631 0.613419
\(604\) −95.3769 −3.88083
\(605\) 6.15723 0.250327
\(606\) 22.7149 0.922728
\(607\) −15.5618 −0.631635 −0.315818 0.948820i \(-0.602279\pi\)
−0.315818 + 0.948820i \(0.602279\pi\)
\(608\) 42.5039 1.72376
\(609\) 29.9970 1.21554
\(610\) −2.33075 −0.0943694
\(611\) −1.42850 −0.0577908
\(612\) 1.20639 0.0487656
\(613\) −44.6684 −1.80414 −0.902070 0.431589i \(-0.857953\pi\)
−0.902070 + 0.431589i \(0.857953\pi\)
\(614\) 49.4141 1.99419
\(615\) 5.38203 0.217024
\(616\) −59.8496 −2.41141
\(617\) −15.2566 −0.614208 −0.307104 0.951676i \(-0.599360\pi\)
−0.307104 + 0.951676i \(0.599360\pi\)
\(618\) 20.6733 0.831600
\(619\) 3.49065 0.140301 0.0701505 0.997536i \(-0.477652\pi\)
0.0701505 + 0.997536i \(0.477652\pi\)
\(620\) −20.4853 −0.822709
\(621\) 7.39214 0.296636
\(622\) −11.1738 −0.448030
\(623\) −66.4771 −2.66335
\(624\) 63.7190 2.55080
\(625\) 15.1988 0.607953
\(626\) 25.8726 1.03408
\(627\) 6.37461 0.254577
\(628\) 79.9625 3.19085
\(629\) 2.15350 0.0858655
\(630\) 8.86573 0.353219
\(631\) −27.2582 −1.08513 −0.542566 0.840013i \(-0.682547\pi\)
−0.542566 + 0.840013i \(0.682547\pi\)
\(632\) 19.6568 0.781906
\(633\) −4.29296 −0.170630
\(634\) −78.0829 −3.10107
\(635\) −5.85675 −0.232418
\(636\) −23.9134 −0.948229
\(637\) −56.5830 −2.24190
\(638\) 36.7637 1.45549
\(639\) 8.20112 0.324431
\(640\) 4.96102 0.196101
\(641\) 38.1237 1.50580 0.752898 0.658138i \(-0.228656\pi\)
0.752898 + 0.658138i \(0.228656\pi\)
\(642\) 38.4093 1.51590
\(643\) −11.8370 −0.466804 −0.233402 0.972380i \(-0.574986\pi\)
−0.233402 + 0.972380i \(0.574986\pi\)
\(644\) −148.929 −5.86863
\(645\) 9.57479 0.377007
\(646\) 2.16801 0.0852994
\(647\) 8.87087 0.348750 0.174375 0.984679i \(-0.444210\pi\)
0.174375 + 0.984679i \(0.444210\pi\)
\(648\) −7.81219 −0.306892
\(649\) −19.0890 −0.749308
\(650\) −67.8678 −2.66199
\(651\) −20.2664 −0.794303
\(652\) −31.0102 −1.21445
\(653\) 1.65914 0.0649274 0.0324637 0.999473i \(-0.489665\pi\)
0.0324637 + 0.999473i \(0.489665\pi\)
\(654\) −4.45880 −0.174353
\(655\) 5.10504 0.199471
\(656\) 69.5286 2.71463
\(657\) −8.32080 −0.324625
\(658\) −2.56769 −0.100099
\(659\) −11.7196 −0.456531 −0.228266 0.973599i \(-0.573305\pi\)
−0.228266 + 0.973599i \(0.573305\pi\)
\(660\) 7.74380 0.301427
\(661\) −20.4153 −0.794063 −0.397032 0.917805i \(-0.629960\pi\)
−0.397032 + 0.917805i \(0.629960\pi\)
\(662\) 28.4029 1.10391
\(663\) 1.44955 0.0562960
\(664\) 60.1091 2.33269
\(665\) 11.3549 0.440326
\(666\) −23.3646 −0.905360
\(667\) 54.6018 2.11419
\(668\) −80.7887 −3.12581
\(669\) 9.66959 0.373848
\(670\) 32.8843 1.27043
\(671\) −2.01405 −0.0777515
\(672\) 51.0816 1.97051
\(673\) 7.08561 0.273130 0.136565 0.990631i \(-0.456394\pi\)
0.136565 + 0.990631i \(0.456394\pi\)
\(674\) 89.3527 3.44174
\(675\) 4.31534 0.166097
\(676\) 111.784 4.29938
\(677\) 13.4807 0.518106 0.259053 0.965863i \(-0.416589\pi\)
0.259053 + 0.965863i \(0.416589\pi\)
\(678\) 34.7079 1.33295
\(679\) 50.1874 1.92601
\(680\) 1.57192 0.0602805
\(681\) −16.2892 −0.624202
\(682\) −24.8381 −0.951101
\(683\) −29.1486 −1.11534 −0.557671 0.830062i \(-0.688305\pi\)
−0.557671 + 0.830062i \(0.688305\pi\)
\(684\) −16.7639 −0.640982
\(685\) 3.67662 0.140476
\(686\) −26.7043 −1.01958
\(687\) −8.28068 −0.315928
\(688\) 123.693 4.71577
\(689\) −28.7334 −1.09465
\(690\) 16.1378 0.614355
\(691\) 1.11440 0.0423937 0.0211968 0.999775i \(-0.493252\pi\)
0.0211968 + 0.999775i \(0.493252\pi\)
\(692\) 25.9588 0.986804
\(693\) 7.66105 0.291019
\(694\) −1.90462 −0.0722982
\(695\) 8.34012 0.316359
\(696\) −57.7044 −2.18728
\(697\) 1.58172 0.0599118
\(698\) −15.9941 −0.605386
\(699\) 12.7656 0.482840
\(700\) −86.9409 −3.28606
\(701\) −40.6141 −1.53397 −0.766986 0.641663i \(-0.778245\pi\)
−0.766986 + 0.641663i \(0.778245\pi\)
\(702\) −15.7271 −0.593581
\(703\) −29.9246 −1.12863
\(704\) 22.2742 0.839490
\(705\) 0.198291 0.00746809
\(706\) 11.2927 0.425005
\(707\) 34.9636 1.31494
\(708\) 50.2000 1.88663
\(709\) −41.0141 −1.54032 −0.770158 0.637853i \(-0.779823\pi\)
−0.770158 + 0.637853i \(0.779823\pi\)
\(710\) 17.9039 0.671920
\(711\) −2.51617 −0.0943639
\(712\) 127.880 4.79252
\(713\) −36.8897 −1.38153
\(714\) 2.60554 0.0975098
\(715\) 9.30463 0.347973
\(716\) 10.6368 0.397515
\(717\) 9.05736 0.338253
\(718\) −47.2150 −1.76205
\(719\) −53.2903 −1.98739 −0.993696 0.112112i \(-0.964238\pi\)
−0.993696 + 0.112112i \(0.964238\pi\)
\(720\) −8.84491 −0.329630
\(721\) 31.8210 1.18508
\(722\) 20.0026 0.744421
\(723\) −18.2228 −0.677712
\(724\) −36.7916 −1.36735
\(725\) 31.8751 1.18381
\(726\) −19.6328 −0.728642
\(727\) −39.6633 −1.47103 −0.735516 0.677508i \(-0.763060\pi\)
−0.735516 + 0.677508i \(0.763060\pi\)
\(728\) 189.115 7.00908
\(729\) 1.00000 0.0370370
\(730\) −18.1651 −0.672322
\(731\) 2.81392 0.104077
\(732\) 5.29652 0.195765
\(733\) −15.3723 −0.567789 −0.283894 0.958856i \(-0.591627\pi\)
−0.283894 + 0.958856i \(0.591627\pi\)
\(734\) 92.2154 3.40373
\(735\) 7.85436 0.289712
\(736\) 92.9808 3.42732
\(737\) 28.4160 1.04672
\(738\) −17.1610 −0.631707
\(739\) 7.44280 0.273788 0.136894 0.990586i \(-0.456288\pi\)
0.136894 + 0.990586i \(0.456288\pi\)
\(740\) −36.3521 −1.33633
\(741\) −20.1428 −0.739963
\(742\) −51.6475 −1.89604
\(743\) 7.88168 0.289151 0.144575 0.989494i \(-0.453818\pi\)
0.144575 + 0.989494i \(0.453818\pi\)
\(744\) 38.9860 1.42929
\(745\) 2.60897 0.0955854
\(746\) 4.62746 0.169423
\(747\) −7.69428 −0.281519
\(748\) 2.27581 0.0832120
\(749\) 59.1211 2.16024
\(750\) 20.3363 0.742577
\(751\) 36.5220 1.33271 0.666354 0.745636i \(-0.267854\pi\)
0.666354 + 0.745636i \(0.267854\pi\)
\(752\) 2.56166 0.0934141
\(753\) 5.59605 0.203931
\(754\) −116.168 −4.23058
\(755\) 15.9079 0.578948
\(756\) −20.1470 −0.732738
\(757\) −37.0377 −1.34616 −0.673079 0.739571i \(-0.735029\pi\)
−0.673079 + 0.739571i \(0.735029\pi\)
\(758\) −27.2572 −0.990027
\(759\) 13.9450 0.506171
\(760\) −21.8432 −0.792337
\(761\) −8.87266 −0.321634 −0.160817 0.986984i \(-0.551413\pi\)
−0.160817 + 0.986984i \(0.551413\pi\)
\(762\) 18.6747 0.676514
\(763\) −6.86315 −0.248463
\(764\) −83.2881 −3.01326
\(765\) −0.201214 −0.00727492
\(766\) −23.1582 −0.836741
\(767\) 60.3182 2.17796
\(768\) 7.79619 0.281321
\(769\) −18.0361 −0.650397 −0.325198 0.945646i \(-0.605431\pi\)
−0.325198 + 0.945646i \(0.605431\pi\)
\(770\) 16.7248 0.602722
\(771\) 6.26550 0.225647
\(772\) 56.9874 2.05102
\(773\) −37.6071 −1.35263 −0.676317 0.736611i \(-0.736425\pi\)
−0.676317 + 0.736611i \(0.736425\pi\)
\(774\) −30.5300 −1.09738
\(775\) −21.5353 −0.773570
\(776\) −96.5442 −3.46573
\(777\) −35.9637 −1.29019
\(778\) 29.2639 1.04916
\(779\) −21.9793 −0.787490
\(780\) −24.4692 −0.876138
\(781\) 15.4711 0.553599
\(782\) 4.74271 0.169599
\(783\) 7.38646 0.263971
\(784\) 101.468 3.62385
\(785\) −13.3369 −0.476015
\(786\) −16.2778 −0.580611
\(787\) −48.3243 −1.72258 −0.861288 0.508117i \(-0.830342\pi\)
−0.861288 + 0.508117i \(0.830342\pi\)
\(788\) −115.168 −4.10271
\(789\) 1.97108 0.0701723
\(790\) −5.49306 −0.195434
\(791\) 53.4236 1.89953
\(792\) −14.7374 −0.523670
\(793\) 6.36408 0.225995
\(794\) 46.0228 1.63329
\(795\) 3.98852 0.141458
\(796\) −104.967 −3.72047
\(797\) 20.2564 0.717517 0.358758 0.933430i \(-0.383200\pi\)
0.358758 + 0.933430i \(0.383200\pi\)
\(798\) −36.2061 −1.28168
\(799\) 0.0582756 0.00206164
\(800\) 54.2798 1.91908
\(801\) −16.3693 −0.578382
\(802\) 11.6391 0.410990
\(803\) −15.6969 −0.553930
\(804\) −74.7281 −2.63546
\(805\) 24.8399 0.875490
\(806\) 78.4846 2.76450
\(807\) −28.0222 −0.986429
\(808\) −67.2585 −2.36615
\(809\) 0.751842 0.0264334 0.0132167 0.999913i \(-0.495793\pi\)
0.0132167 + 0.999913i \(0.495793\pi\)
\(810\) 2.18310 0.0767063
\(811\) −43.2284 −1.51796 −0.758978 0.651116i \(-0.774301\pi\)
−0.758978 + 0.651116i \(0.774301\pi\)
\(812\) −148.815 −5.22237
\(813\) 11.8594 0.415926
\(814\) −44.0764 −1.54488
\(815\) 5.17219 0.181174
\(816\) −2.59942 −0.0909979
\(817\) −39.1018 −1.36800
\(818\) 9.53147 0.333260
\(819\) −24.2077 −0.845887
\(820\) −26.7002 −0.932411
\(821\) 32.6938 1.14102 0.570511 0.821290i \(-0.306745\pi\)
0.570511 + 0.821290i \(0.306745\pi\)
\(822\) −11.7232 −0.408893
\(823\) −1.53780 −0.0536043 −0.0268021 0.999641i \(-0.508532\pi\)
−0.0268021 + 0.999641i \(0.508532\pi\)
\(824\) −61.2133 −2.13247
\(825\) 8.14071 0.283423
\(826\) 108.421 3.77243
\(827\) 47.0295 1.63538 0.817688 0.575662i \(-0.195256\pi\)
0.817688 + 0.575662i \(0.195256\pi\)
\(828\) −36.6723 −1.27445
\(829\) 43.5422 1.51228 0.756142 0.654408i \(-0.227082\pi\)
0.756142 + 0.654408i \(0.227082\pi\)
\(830\) −16.7974 −0.583046
\(831\) −32.6523 −1.13270
\(832\) −70.3830 −2.44009
\(833\) 2.30831 0.0799781
\(834\) −26.5932 −0.920846
\(835\) 13.4747 0.466313
\(836\) −31.6244 −1.09375
\(837\) −4.99040 −0.172494
\(838\) −91.0273 −3.14448
\(839\) −4.74229 −0.163722 −0.0818611 0.996644i \(-0.526086\pi\)
−0.0818611 + 0.996644i \(0.526086\pi\)
\(840\) −26.2514 −0.905758
\(841\) 25.5598 0.881373
\(842\) 27.5293 0.948722
\(843\) 26.5588 0.914733
\(844\) 21.2973 0.733085
\(845\) −18.6444 −0.641387
\(846\) −0.632268 −0.0217378
\(847\) −30.2196 −1.03836
\(848\) 51.5262 1.76942
\(849\) 15.8232 0.543052
\(850\) 2.76867 0.0949646
\(851\) −65.4626 −2.24403
\(852\) −40.6857 −1.39387
\(853\) 37.8746 1.29680 0.648401 0.761299i \(-0.275438\pi\)
0.648401 + 0.761299i \(0.275438\pi\)
\(854\) 11.4393 0.391444
\(855\) 2.79604 0.0956227
\(856\) −113.730 −3.88720
\(857\) 31.3998 1.07260 0.536298 0.844029i \(-0.319822\pi\)
0.536298 + 0.844029i \(0.319822\pi\)
\(858\) −29.6686 −1.01287
\(859\) −22.0543 −0.752482 −0.376241 0.926522i \(-0.622783\pi\)
−0.376241 + 0.926522i \(0.622783\pi\)
\(860\) −47.5005 −1.61975
\(861\) −26.4149 −0.900217
\(862\) 17.4397 0.593998
\(863\) 54.1907 1.84467 0.922336 0.386389i \(-0.126278\pi\)
0.922336 + 0.386389i \(0.126278\pi\)
\(864\) 12.5783 0.427924
\(865\) −4.32966 −0.147213
\(866\) 57.4079 1.95080
\(867\) 16.9409 0.575342
\(868\) 100.541 3.41260
\(869\) −4.74666 −0.161019
\(870\) 16.1254 0.546702
\(871\) −89.7902 −3.04242
\(872\) 13.2025 0.447092
\(873\) 12.3581 0.418260
\(874\) −65.9040 −2.22923
\(875\) 31.3024 1.05821
\(876\) 41.2794 1.39470
\(877\) 27.6754 0.934532 0.467266 0.884117i \(-0.345239\pi\)
0.467266 + 0.884117i \(0.345239\pi\)
\(878\) 60.3353 2.03622
\(879\) 25.7679 0.869129
\(880\) −16.6856 −0.562470
\(881\) 15.5584 0.524176 0.262088 0.965044i \(-0.415589\pi\)
0.262088 + 0.965044i \(0.415589\pi\)
\(882\) −25.0443 −0.843284
\(883\) 36.5831 1.23112 0.615560 0.788090i \(-0.288930\pi\)
0.615560 + 0.788090i \(0.288930\pi\)
\(884\) −7.19122 −0.241867
\(885\) −8.37285 −0.281450
\(886\) −47.2689 −1.58803
\(887\) −35.1999 −1.18190 −0.590948 0.806710i \(-0.701246\pi\)
−0.590948 + 0.806710i \(0.701246\pi\)
\(888\) 69.1824 2.32161
\(889\) 28.7448 0.964070
\(890\) −35.7359 −1.19787
\(891\) 1.88646 0.0631988
\(892\) −47.9707 −1.60618
\(893\) −0.809789 −0.0270985
\(894\) −8.31893 −0.278227
\(895\) −1.77411 −0.0593018
\(896\) −24.3486 −0.813429
\(897\) −44.0640 −1.47125
\(898\) 106.131 3.54163
\(899\) −36.8614 −1.22940
\(900\) −21.4084 −0.713612
\(901\) 1.17218 0.0390510
\(902\) −32.3736 −1.07792
\(903\) −46.9929 −1.56383
\(904\) −102.770 −3.41807
\(905\) 6.13646 0.203983
\(906\) −50.7236 −1.68518
\(907\) 50.2106 1.66722 0.833608 0.552356i \(-0.186271\pi\)
0.833608 + 0.552356i \(0.186271\pi\)
\(908\) 80.8104 2.68179
\(909\) 8.60943 0.285557
\(910\) −52.8479 −1.75189
\(911\) 31.2916 1.03674 0.518368 0.855157i \(-0.326540\pi\)
0.518368 + 0.855157i \(0.326540\pi\)
\(912\) 36.1211 1.19609
\(913\) −14.5149 −0.480375
\(914\) 27.6376 0.914171
\(915\) −0.883406 −0.0292045
\(916\) 41.0804 1.35733
\(917\) −25.0555 −0.827404
\(918\) 0.641588 0.0211756
\(919\) −35.5332 −1.17213 −0.586066 0.810264i \(-0.699324\pi\)
−0.586066 + 0.810264i \(0.699324\pi\)
\(920\) −47.7838 −1.57539
\(921\) 18.7290 0.617142
\(922\) −9.68617 −0.318997
\(923\) −48.8862 −1.60911
\(924\) −38.0064 −1.25032
\(925\) −38.2154 −1.25651
\(926\) −7.00759 −0.230284
\(927\) 7.83562 0.257355
\(928\) 92.9094 3.04990
\(929\) −32.6251 −1.07040 −0.535198 0.844727i \(-0.679763\pi\)
−0.535198 + 0.844727i \(0.679763\pi\)
\(930\) −10.8945 −0.357246
\(931\) −32.0759 −1.05124
\(932\) −63.3302 −2.07445
\(933\) −4.23513 −0.138652
\(934\) 5.68817 0.186123
\(935\) −0.379583 −0.0124137
\(936\) 46.5678 1.52212
\(937\) −40.0757 −1.30922 −0.654609 0.755968i \(-0.727167\pi\)
−0.654609 + 0.755968i \(0.727167\pi\)
\(938\) −161.396 −5.26976
\(939\) 9.80629 0.320016
\(940\) −0.983722 −0.0320855
\(941\) −1.38053 −0.0450041 −0.0225020 0.999747i \(-0.507163\pi\)
−0.0225020 + 0.999747i \(0.507163\pi\)
\(942\) 42.5259 1.38557
\(943\) −48.0815 −1.56575
\(944\) −108.166 −3.52050
\(945\) 3.36031 0.109311
\(946\) −57.5936 −1.87253
\(947\) −28.3692 −0.921877 −0.460938 0.887432i \(-0.652487\pi\)
−0.460938 + 0.887432i \(0.652487\pi\)
\(948\) 12.4827 0.405420
\(949\) 49.5996 1.61007
\(950\) −38.4730 −1.24823
\(951\) −29.5952 −0.959689
\(952\) −7.71498 −0.250044
\(953\) −30.9010 −1.00098 −0.500491 0.865741i \(-0.666847\pi\)
−0.500491 + 0.865741i \(0.666847\pi\)
\(954\) −12.7177 −0.411751
\(955\) 13.8916 0.449522
\(956\) −44.9335 −1.45325
\(957\) 13.9343 0.450431
\(958\) −6.37413 −0.205939
\(959\) −18.0448 −0.582696
\(960\) 9.76995 0.315324
\(961\) −6.09589 −0.196642
\(962\) 139.275 4.49039
\(963\) 14.5580 0.469125
\(964\) 90.4030 2.91168
\(965\) −9.50492 −0.305974
\(966\) −79.2039 −2.54834
\(967\) −6.56389 −0.211080 −0.105540 0.994415i \(-0.533657\pi\)
−0.105540 + 0.994415i \(0.533657\pi\)
\(968\) 58.1326 1.86845
\(969\) 0.821725 0.0263976
\(970\) 26.9791 0.866246
\(971\) −7.40148 −0.237525 −0.118762 0.992923i \(-0.537893\pi\)
−0.118762 + 0.992923i \(0.537893\pi\)
\(972\) −4.96099 −0.159124
\(973\) −40.9332 −1.31226
\(974\) 39.2962 1.25913
\(975\) −25.7234 −0.823808
\(976\) −11.4124 −0.365303
\(977\) −27.5908 −0.882707 −0.441354 0.897333i \(-0.645502\pi\)
−0.441354 + 0.897333i \(0.645502\pi\)
\(978\) −16.4919 −0.527354
\(979\) −30.8801 −0.986932
\(980\) −38.9654 −1.24470
\(981\) −1.68998 −0.0539570
\(982\) 5.23505 0.167057
\(983\) −33.6727 −1.07399 −0.536996 0.843585i \(-0.680441\pi\)
−0.536996 + 0.843585i \(0.680441\pi\)
\(984\) 50.8137 1.61988
\(985\) 19.2089 0.612047
\(986\) 4.73907 0.150923
\(987\) −0.973211 −0.0309776
\(988\) 99.9281 3.17914
\(989\) −85.5385 −2.71997
\(990\) 4.11833 0.130889
\(991\) 0.783082 0.0248754 0.0124377 0.999923i \(-0.496041\pi\)
0.0124377 + 0.999923i \(0.496041\pi\)
\(992\) −62.7710 −1.99298
\(993\) 10.7653 0.341627
\(994\) −87.8718 −2.78713
\(995\) 17.5075 0.555024
\(996\) 38.1712 1.20950
\(997\) −9.05962 −0.286921 −0.143461 0.989656i \(-0.545823\pi\)
−0.143461 + 0.989656i \(0.545823\pi\)
\(998\) −25.7388 −0.814746
\(999\) −8.85570 −0.280182
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8031.2.a.b.1.6 102
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8031.2.a.b.1.6 102 1.1 even 1 trivial