Properties

Label 8016.2.a.o
Level 8016
Weight 2
Character orbit 8016.a
Self dual Yes
Analytic conductor 64.008
Analytic rank 0
Dimension 4
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8016 = 2^{4} \cdot 3 \cdot 167 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8016.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(64.0080822603\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2777.1
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(+ q^{3}\) \( + ( 1 - \beta_{1} ) q^{5} \) \( + ( -\beta_{2} + \beta_{3} ) q^{7} \) \(+ q^{9}\) \(+O(q^{10})\) \( q\) \(+ q^{3}\) \( + ( 1 - \beta_{1} ) q^{5} \) \( + ( -\beta_{2} + \beta_{3} ) q^{7} \) \(+ q^{9}\) \( + ( 2 + \beta_{3} ) q^{13} \) \( + ( 1 - \beta_{1} ) q^{15} \) \( + ( 3 + \beta_{1} - \beta_{2} ) q^{17} \) \( + 2 \beta_{2} q^{19} \) \( + ( -\beta_{2} + \beta_{3} ) q^{21} \) \( -2 \beta_{2} q^{23} \) \( + ( 1 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{25} \) \(+ q^{27}\) \( + ( 4 + 2 \beta_{1} ) q^{29} \) \( + ( -\beta_{2} - \beta_{3} ) q^{31} \) \( + ( -2 - 2 \beta_{1} + \beta_{2} + \beta_{3} ) q^{35} \) \( + ( 2 - 3 \beta_{2} ) q^{37} \) \( + ( 2 + \beta_{3} ) q^{39} \) \( + ( 3 + \beta_{1} + 3 \beta_{2} ) q^{41} \) \( + ( -1 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{43} \) \( + ( 1 - \beta_{1} ) q^{45} \) \( + ( -2 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{47} \) \( + ( 3 + 2 \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{49} \) \( + ( 3 + \beta_{1} - \beta_{2} ) q^{51} \) \( + ( 1 - \beta_{1} - 2 \beta_{2} ) q^{53} \) \( + 2 \beta_{2} q^{57} \) \( + ( 2 + 2 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{59} \) \( -2 \beta_{1} q^{61} \) \( + ( -\beta_{2} + \beta_{3} ) q^{63} \) \( + ( -4 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{65} \) \( + ( 3 + 3 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{67} \) \( -2 \beta_{2} q^{69} \) \( + ( -2 - 2 \beta_{1} + 4 \beta_{2} ) q^{71} \) \( + ( -2 \beta_{1} - 2 \beta_{3} ) q^{73} \) \( + ( 1 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{75} \) \( + ( 3 + 3 \beta_{1} + \beta_{2} ) q^{79} \) \(+ q^{81}\) \( + ( -4 - 4 \beta_{1} - \beta_{2} ) q^{83} \) \( + ( -2 - 2 \beta_{1} - 2 \beta_{3} ) q^{85} \) \( + ( 4 + 2 \beta_{1} ) q^{87} \) \( + ( 4 + 2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{89} \) \( + ( 8 - 2 \beta_{2} + 2 \beta_{3} ) q^{91} \) \( + ( -\beta_{2} - \beta_{3} ) q^{93} \) \( + ( 2 \beta_{2} + 2 \beta_{3} ) q^{95} \) \( + ( 2 + 4 \beta_{1} + \beta_{2} - \beta_{3} ) q^{97} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 4q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 5q^{5} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 4q^{9} \) \(\mathstrut +\mathstrut 8q^{13} \) \(\mathstrut +\mathstrut 5q^{15} \) \(\mathstrut +\mathstrut 10q^{17} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut -\mathstrut q^{21} \) \(\mathstrut -\mathstrut 2q^{23} \) \(\mathstrut +\mathstrut 5q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut +\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut q^{31} \) \(\mathstrut -\mathstrut 5q^{35} \) \(\mathstrut +\mathstrut 5q^{37} \) \(\mathstrut +\mathstrut 8q^{39} \) \(\mathstrut +\mathstrut 14q^{41} \) \(\mathstrut -\mathstrut 2q^{43} \) \(\mathstrut +\mathstrut 5q^{45} \) \(\mathstrut -\mathstrut 7q^{47} \) \(\mathstrut +\mathstrut 13q^{49} \) \(\mathstrut +\mathstrut 10q^{51} \) \(\mathstrut +\mathstrut 3q^{53} \) \(\mathstrut +\mathstrut 2q^{57} \) \(\mathstrut +\mathstrut 5q^{59} \) \(\mathstrut +\mathstrut 2q^{61} \) \(\mathstrut -\mathstrut q^{63} \) \(\mathstrut +\mathstrut 6q^{65} \) \(\mathstrut +\mathstrut 7q^{67} \) \(\mathstrut -\mathstrut 2q^{69} \) \(\mathstrut -\mathstrut 2q^{71} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 5q^{75} \) \(\mathstrut +\mathstrut 10q^{79} \) \(\mathstrut +\mathstrut 4q^{81} \) \(\mathstrut -\mathstrut 13q^{83} \) \(\mathstrut -\mathstrut 6q^{85} \) \(\mathstrut +\mathstrut 14q^{87} \) \(\mathstrut +\mathstrut 13q^{89} \) \(\mathstrut +\mathstrut 30q^{91} \) \(\mathstrut -\mathstrut q^{93} \) \(\mathstrut +\mathstrut 2q^{95} \) \(\mathstrut +\mathstrut 5q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4}\mathstrut -\mathstrut \) \(x^{3}\mathstrut -\mathstrut \) \(4\) \(x^{2}\mathstrut +\mathstrut \) \(x\mathstrut +\mathstrut \) \(2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{3} - \nu^{2} - 2 \nu \)
\(\beta_{2}\)\(=\)\( \nu^{3} - \nu^{2} - 4 \nu + 1 \)
\(\beta_{3}\)\(=\)\( 2 \nu^{2} - 2 \nu - 4 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\)\(\beta_{2}\mathstrut +\mathstrut \) \(\beta_{1}\mathstrut +\mathstrut \) \(1\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3}\mathstrut -\mathstrut \) \(\beta_{2}\mathstrut +\mathstrut \) \(\beta_{1}\mathstrut +\mathstrut \) \(5\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{3}\mathstrut -\mathstrut \) \(3\) \(\beta_{2}\mathstrut +\mathstrut \) \(5\) \(\beta_{1}\mathstrut +\mathstrut \) \(7\)\()/2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.36234
−0.679643
0.825785
−1.50848
0 1.00000 0 −1.87806 0 3.28324 0 1.00000 0
1.2 0 1.00000 0 0.416566 0 −4.65960 0 1.00000 0
1.3 0 1.00000 0 2.77037 0 −1.86579 0 1.00000 0
1.4 0 1.00000 0 3.69113 0 2.24216 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(167\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8016))\):

\(T_{5}^{4} \) \(\mathstrut -\mathstrut 5 T_{5}^{3} \) \(\mathstrut +\mathstrut 20 T_{5} \) \(\mathstrut -\mathstrut 8 \)
\(T_{7}^{4} \) \(\mathstrut +\mathstrut T_{7}^{3} \) \(\mathstrut -\mathstrut 20 T_{7}^{2} \) \(\mathstrut +\mathstrut 64 \)
\(T_{11} \)
\(T_{13}^{4} \) \(\mathstrut -\mathstrut 8 T_{13}^{3} \) \(\mathstrut +\mathstrut 4 T_{13}^{2} \) \(\mathstrut +\mathstrut 56 T_{13} \) \(\mathstrut -\mathstrut 16 \)