Properties

Label 8003.2.a.c
Level 8003
Weight 2
Character orbit 8003.a
Self dual Yes
Analytic conductor 63.904
Analytic rank 0
Dimension 172
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8003 = 53 \cdot 151 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8003.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(63.9042767376\)
Analytic rank: \(0\)
Dimension: \(172\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(172q \) \(\mathstrut +\mathstrut 8q^{2} \) \(\mathstrut +\mathstrut 25q^{3} \) \(\mathstrut +\mathstrut 188q^{4} \) \(\mathstrut +\mathstrut 27q^{5} \) \(\mathstrut +\mathstrut 10q^{6} \) \(\mathstrut +\mathstrut 31q^{7} \) \(\mathstrut +\mathstrut 21q^{8} \) \(\mathstrut +\mathstrut 179q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(172q \) \(\mathstrut +\mathstrut 8q^{2} \) \(\mathstrut +\mathstrut 25q^{3} \) \(\mathstrut +\mathstrut 188q^{4} \) \(\mathstrut +\mathstrut 27q^{5} \) \(\mathstrut +\mathstrut 10q^{6} \) \(\mathstrut +\mathstrut 31q^{7} \) \(\mathstrut +\mathstrut 21q^{8} \) \(\mathstrut +\mathstrut 179q^{9} \) \(\mathstrut +\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 3q^{11} \) \(\mathstrut +\mathstrut 66q^{12} \) \(\mathstrut +\mathstrut 121q^{13} \) \(\mathstrut +\mathstrut 12q^{14} \) \(\mathstrut +\mathstrut 30q^{15} \) \(\mathstrut +\mathstrut 212q^{16} \) \(\mathstrut +\mathstrut 8q^{17} \) \(\mathstrut +\mathstrut 40q^{18} \) \(\mathstrut +\mathstrut 41q^{19} \) \(\mathstrut +\mathstrut 64q^{20} \) \(\mathstrut +\mathstrut 56q^{21} \) \(\mathstrut +\mathstrut 50q^{22} \) \(\mathstrut +\mathstrut 28q^{23} \) \(\mathstrut +\mathstrut 30q^{24} \) \(\mathstrut +\mathstrut 231q^{25} \) \(\mathstrut +\mathstrut 38q^{26} \) \(\mathstrut +\mathstrut 100q^{27} \) \(\mathstrut +\mathstrut 80q^{28} \) \(\mathstrut +\mathstrut 26q^{29} \) \(\mathstrut +\mathstrut 55q^{30} \) \(\mathstrut +\mathstrut 66q^{31} \) \(\mathstrut +\mathstrut 65q^{32} \) \(\mathstrut +\mathstrut 99q^{33} \) \(\mathstrut +\mathstrut 81q^{34} \) \(\mathstrut +\mathstrut 36q^{35} \) \(\mathstrut +\mathstrut 212q^{36} \) \(\mathstrut +\mathstrut 153q^{37} \) \(\mathstrut +\mathstrut q^{38} \) \(\mathstrut +\mathstrut 20q^{39} \) \(\mathstrut +\mathstrut 59q^{40} \) \(\mathstrut +\mathstrut 40q^{41} \) \(\mathstrut +\mathstrut 50q^{42} \) \(\mathstrut +\mathstrut 39q^{43} \) \(\mathstrut -\mathstrut 51q^{44} \) \(\mathstrut +\mathstrut 123q^{45} \) \(\mathstrut +\mathstrut 59q^{46} \) \(\mathstrut +\mathstrut 29q^{47} \) \(\mathstrut +\mathstrut 128q^{48} \) \(\mathstrut +\mathstrut 245q^{49} \) \(\mathstrut +\mathstrut 19q^{50} \) \(\mathstrut +\mathstrut 36q^{51} \) \(\mathstrut +\mathstrut 215q^{52} \) \(\mathstrut -\mathstrut 172q^{53} \) \(\mathstrut +\mathstrut 40q^{54} \) \(\mathstrut +\mathstrut 40q^{55} \) \(\mathstrut +\mathstrut 15q^{56} \) \(\mathstrut +\mathstrut 54q^{57} \) \(\mathstrut +\mathstrut 44q^{58} \) \(\mathstrut -\mathstrut 54q^{60} \) \(\mathstrut +\mathstrut 100q^{61} \) \(\mathstrut -\mathstrut 29q^{62} \) \(\mathstrut +\mathstrut 92q^{63} \) \(\mathstrut +\mathstrut 253q^{64} \) \(\mathstrut +\mathstrut 77q^{65} \) \(\mathstrut +\mathstrut 14q^{66} \) \(\mathstrut +\mathstrut 126q^{67} \) \(\mathstrut -\mathstrut 27q^{68} \) \(\mathstrut +\mathstrut 47q^{69} \) \(\mathstrut +\mathstrut 72q^{70} \) \(\mathstrut +\mathstrut 38q^{71} \) \(\mathstrut +\mathstrut 65q^{72} \) \(\mathstrut +\mathstrut 185q^{73} \) \(\mathstrut +\mathstrut 48q^{74} \) \(\mathstrut +\mathstrut 75q^{75} \) \(\mathstrut +\mathstrut 38q^{76} \) \(\mathstrut +\mathstrut 120q^{77} \) \(\mathstrut +\mathstrut 75q^{78} \) \(\mathstrut +\mathstrut 79q^{79} \) \(\mathstrut +\mathstrut 43q^{80} \) \(\mathstrut +\mathstrut 232q^{81} \) \(\mathstrut +\mathstrut 110q^{82} \) \(\mathstrut +\mathstrut 90q^{83} \) \(\mathstrut +\mathstrut 158q^{84} \) \(\mathstrut +\mathstrut 115q^{85} \) \(\mathstrut +\mathstrut 68q^{86} \) \(\mathstrut +\mathstrut 61q^{87} \) \(\mathstrut +\mathstrut 15q^{88} \) \(\mathstrut -\mathstrut 36q^{89} \) \(\mathstrut -\mathstrut 6q^{90} \) \(\mathstrut +\mathstrut 33q^{91} \) \(\mathstrut +\mathstrut 139q^{92} \) \(\mathstrut +\mathstrut 103q^{93} \) \(\mathstrut -\mathstrut 24q^{94} \) \(\mathstrut -\mathstrut 45q^{95} \) \(\mathstrut +\mathstrut 34q^{96} \) \(\mathstrut +\mathstrut 159q^{97} \) \(\mathstrut -\mathstrut 36q^{98} \) \(\mathstrut +\mathstrut 27q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.79279 3.40925 5.79969 2.64273 −9.52131 3.16263 −10.6117 8.62295 −7.38060
1.2 −2.76521 1.30852 5.64636 −2.58270 −3.61833 −0.870652 −10.0829 −1.28777 7.14170
1.3 −2.76129 2.33703 5.62470 −2.36515 −6.45322 1.79490 −10.0088 2.46173 6.53087
1.4 −2.74848 0.238468 5.55414 −0.412520 −0.655426 −2.19155 −9.76848 −2.94313 1.13380
1.5 −2.68534 −1.17289 5.21107 0.884422 3.14961 −0.361098 −8.62282 −1.62433 −2.37498
1.6 −2.68137 1.21893 5.18975 2.92126 −3.26842 4.69101 −8.55290 −1.51420 −7.83297
1.7 −2.65004 −0.851556 5.02269 −0.493922 2.25665 4.68994 −8.01024 −2.27485 1.30891
1.8 −2.60343 −2.10556 4.77783 −3.11826 5.48166 −2.87442 −7.23187 1.43337 8.11816
1.9 −2.58576 1.51660 4.68613 −3.91728 −3.92157 −1.90750 −6.94569 −0.699911 10.1291
1.10 −2.56961 −1.95716 4.60287 1.92681 5.02912 3.09633 −6.68835 0.830463 −4.95115
1.11 −2.55384 0.729856 4.52207 2.13397 −1.86393 −2.81962 −6.44096 −2.46731 −5.44980
1.12 −2.53688 −2.79023 4.43578 3.33172 7.07848 −4.26650 −6.17928 4.78538 −8.45219
1.13 −2.52938 −2.71474 4.39775 −1.01620 6.86661 3.17147 −6.06482 4.36984 2.57036
1.14 −2.49180 1.26406 4.20905 −3.18748 −3.14979 4.16576 −5.50450 −1.40214 7.94255
1.15 −2.40631 0.956408 3.79032 0.737910 −2.30141 −3.66716 −4.30806 −2.08528 −1.77564
1.16 −2.39169 −2.70490 3.72019 3.87028 6.46929 −0.448223 −4.11416 4.31650 −9.25652
1.17 −2.35311 −1.80440 3.53712 −3.84522 4.24595 1.90458 −3.61701 0.255862 9.04823
1.18 −2.31012 2.93351 3.33667 2.06855 −6.77677 −0.615068 −3.08788 5.60546 −4.77860
1.19 −2.30956 −1.91926 3.33407 3.27349 4.43265 −1.87972 −3.08112 0.683571 −7.56031
1.20 −2.30137 2.98215 3.29631 1.02491 −6.86304 3.76670 −2.98329 5.89324 −2.35871
See next 80 embeddings (of 172 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.172
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(53\) \(1\)
\(151\) \(-1\)