Properties

Label 8001.2.a.x
Level 8001
Weight 2
Character orbit 8001.a
Self dual Yes
Analytic conductor 63.888
Analytic rank 1
Dimension 22
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8001.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(1\)
Dimension: \(22\)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(22q \) \(\mathstrut +\mathstrut 10q^{4} \) \(\mathstrut +\mathstrut 22q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(22q \) \(\mathstrut +\mathstrut 10q^{4} \) \(\mathstrut +\mathstrut 22q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 10q^{13} \) \(\mathstrut -\mathstrut 6q^{16} \) \(\mathstrut -\mathstrut 18q^{19} \) \(\mathstrut -\mathstrut 34q^{22} \) \(\mathstrut -\mathstrut 26q^{25} \) \(\mathstrut +\mathstrut 10q^{28} \) \(\mathstrut -\mathstrut 42q^{31} \) \(\mathstrut -\mathstrut 16q^{34} \) \(\mathstrut -\mathstrut 36q^{37} \) \(\mathstrut -\mathstrut 46q^{40} \) \(\mathstrut -\mathstrut 54q^{43} \) \(\mathstrut -\mathstrut 12q^{46} \) \(\mathstrut +\mathstrut 22q^{49} \) \(\mathstrut -\mathstrut 22q^{52} \) \(\mathstrut -\mathstrut 28q^{55} \) \(\mathstrut -\mathstrut 26q^{58} \) \(\mathstrut -\mathstrut 22q^{61} \) \(\mathstrut -\mathstrut 76q^{64} \) \(\mathstrut -\mathstrut 48q^{67} \) \(\mathstrut -\mathstrut 4q^{70} \) \(\mathstrut -\mathstrut 48q^{73} \) \(\mathstrut -\mathstrut 20q^{76} \) \(\mathstrut -\mathstrut 94q^{79} \) \(\mathstrut -\mathstrut 8q^{82} \) \(\mathstrut -\mathstrut 40q^{85} \) \(\mathstrut -\mathstrut 26q^{88} \) \(\mathstrut -\mathstrut 10q^{91} \) \(\mathstrut -\mathstrut 26q^{94} \) \(\mathstrut -\mathstrut 56q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.37730 0 3.65154 2.39021 0 1.00000 −3.92621 0 −5.68223
1.2 −2.32723 0 3.41602 1.82757 0 1.00000 −3.29542 0 −4.25318
1.3 −2.21969 0 2.92701 0.739015 0 1.00000 −2.05767 0 −1.64038
1.4 −1.94436 0 1.78053 −1.34248 0 1.00000 0.426737 0 2.61025
1.5 −1.69586 0 0.875937 −2.42277 0 1.00000 1.90625 0 4.10867
1.6 −1.56609 0 0.452631 −2.71234 0 1.00000 2.42332 0 4.24776
1.7 −0.775659 0 −1.39835 −0.833166 0 1.00000 2.63596 0 0.646253
1.8 −0.691771 0 −1.52145 −0.236679 0 1.00000 2.43604 0 0.163728
1.9 −0.684852 0 −1.53098 −0.182709 0 1.00000 2.41820 0 0.125129
1.10 −0.446366 0 −1.80076 2.33773 0 1.00000 1.69653 0 −1.04348
1.11 −0.384540 0 −1.85213 3.33517 0 1.00000 1.48130 0 −1.28251
1.12 0.384540 0 −1.85213 −3.33517 0 1.00000 −1.48130 0 −1.28251
1.13 0.446366 0 −1.80076 −2.33773 0 1.00000 −1.69653 0 −1.04348
1.14 0.684852 0 −1.53098 0.182709 0 1.00000 −2.41820 0 0.125129
1.15 0.691771 0 −1.52145 0.236679 0 1.00000 −2.43604 0 0.163728
1.16 0.775659 0 −1.39835 0.833166 0 1.00000 −2.63596 0 0.646253
1.17 1.56609 0 0.452631 2.71234 0 1.00000 −2.42332 0 4.24776
1.18 1.69586 0 0.875937 2.42277 0 1.00000 −1.90625 0 4.10867
1.19 1.94436 0 1.78053 1.34248 0 1.00000 −0.426737 0 2.61025
1.20 2.21969 0 2.92701 −0.739015 0 1.00000 2.05767 0 −1.64038
See all 22 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.22
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(7\) \(-1\)
\(127\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8001))\):

\(T_{2}^{22} - \cdots\)
\(T_{5}^{22} - \cdots\)