Properties

Label 8001.2.a.d
Level 8001
Weight 2
Character orbit 8001.a
Self dual Yes
Analytic conductor 63.888
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 8001.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut +\mathstrut q^{2} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut -\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut +\mathstrut q^{2} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut -\mathstrut 3q^{8} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut +\mathstrut 2q^{13} \) \(\mathstrut -\mathstrut q^{14} \) \(\mathstrut -\mathstrut q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 4q^{20} \) \(\mathstrut +\mathstrut 11q^{25} \) \(\mathstrut +\mathstrut 2q^{26} \) \(\mathstrut +\mathstrut q^{28} \) \(\mathstrut +\mathstrut 10q^{29} \) \(\mathstrut +\mathstrut 6q^{31} \) \(\mathstrut +\mathstrut 5q^{32} \) \(\mathstrut -\mathstrut 6q^{34} \) \(\mathstrut +\mathstrut 4q^{35} \) \(\mathstrut +\mathstrut 10q^{37} \) \(\mathstrut +\mathstrut 2q^{38} \) \(\mathstrut +\mathstrut 12q^{40} \) \(\mathstrut -\mathstrut 10q^{41} \) \(\mathstrut -\mathstrut 4q^{43} \) \(\mathstrut +\mathstrut 6q^{47} \) \(\mathstrut +\mathstrut q^{49} \) \(\mathstrut +\mathstrut 11q^{50} \) \(\mathstrut -\mathstrut 2q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut +\mathstrut 3q^{56} \) \(\mathstrut +\mathstrut 10q^{58} \) \(\mathstrut -\mathstrut 12q^{59} \) \(\mathstrut -\mathstrut 6q^{61} \) \(\mathstrut +\mathstrut 6q^{62} \) \(\mathstrut +\mathstrut 7q^{64} \) \(\mathstrut -\mathstrut 8q^{65} \) \(\mathstrut -\mathstrut 12q^{67} \) \(\mathstrut +\mathstrut 6q^{68} \) \(\mathstrut +\mathstrut 4q^{70} \) \(\mathstrut +\mathstrut 14q^{73} \) \(\mathstrut +\mathstrut 10q^{74} \) \(\mathstrut -\mathstrut 2q^{76} \) \(\mathstrut -\mathstrut 12q^{79} \) \(\mathstrut +\mathstrut 4q^{80} \) \(\mathstrut -\mathstrut 10q^{82} \) \(\mathstrut +\mathstrut 24q^{85} \) \(\mathstrut -\mathstrut 4q^{86} \) \(\mathstrut +\mathstrut 8q^{89} \) \(\mathstrut -\mathstrut 2q^{91} \) \(\mathstrut +\mathstrut 6q^{94} \) \(\mathstrut -\mathstrut 8q^{95} \) \(\mathstrut -\mathstrut 4q^{97} \) \(\mathstrut +\mathstrut q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 −1.00000 −4.00000 0 −1.00000 −3.00000 0 −4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)
\(127\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8001))\):

\(T_{2} \) \(\mathstrut -\mathstrut 1 \)
\(T_{5} \) \(\mathstrut +\mathstrut 4 \)