Related objects

Learn more about

Show commands for: Magma / SageMath

Decomposition of \( S_{10}^{\mathrm{new}}(8) \) into irreducible Hecke orbits

magma: S := CuspForms(8,10);
magma: N := Newforms(S);
sage: N = Newforms(8,10,names="a")
Label Dimension Field $q$-expansion of eigenform
8.10.1.a 1 \(\Q\) \(q \) \(\mathstrut-\) \(60q^{3} \) \(\mathstrut-\) \(2074q^{5} \) \(\mathstrut-\) \(4344q^{7} \) \(\mathstrut-\) \(16083q^{9} \) \(\mathstrut+O(q^{10}) \)
8.10.1.b 1 \(\Q\) \(q \) \(\mathstrut+\) \(68q^{3} \) \(\mathstrut+\) \(1510q^{5} \) \(\mathstrut+\) \(10248q^{7} \) \(\mathstrut-\) \(15059q^{9} \) \(\mathstrut+O(q^{10}) \)

Decomposition of \( S_{10}^{\mathrm{old}}(8) \) into lower level spaces

\( S_{10}^{\mathrm{old}}(8) \) \(\cong\) $ \href{ /ModularForm/GL2/Q/holomorphic/4/10/1/ }{ S^{ new }_{ 10 }(\Gamma_0(4)) }^{\oplus 2 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/2/10/1/ }{ S^{ new }_{ 10 }(\Gamma_0(2)) }^{\oplus 3 } $