Properties

Label 7.6.c.a.2.1
Level 7
Weight 6
Character 7.2
Analytic conductor 1.123
Analytic rank 0
Dimension 4
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 7 \)
Weight: \( k \) = \( 6 \)
Character orbit: \([\chi]\) = 7.c (of order \(3\) and degree \(2\))

Newform invariants

Self dual: No
Analytic conductor: \(1.12268673869\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{37})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2} \)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2.1
Root \(1.77069 - 3.06693i\)
Character \(\chi\) = 7.2
Dual form 7.6.c.a.4.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-3.54138 + 6.13385i) q^{2}\) \(+(5.04138 + 8.73193i) q^{3}\) \(+(-9.08276 - 15.7318i) q^{4}\) \(+(39.9138 - 69.1328i) q^{5}\) \(-71.4138 q^{6}\) \(+(43.1587 + 122.247i) q^{7}\) \(-97.9863 q^{8}\) \(+(70.6689 - 122.402i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-3.54138 + 6.13385i) q^{2}\) \(+(5.04138 + 8.73193i) q^{3}\) \(+(-9.08276 - 15.7318i) q^{4}\) \(+(39.9138 - 69.1328i) q^{5}\) \(-71.4138 q^{6}\) \(+(43.1587 + 122.247i) q^{7}\) \(-97.9863 q^{8}\) \(+(70.6689 - 122.402i) q^{9}\) \(+(282.700 + 489.651i) q^{10}\) \(+(-175.952 - 304.757i) q^{11}\) \(+(91.5793 - 158.620i) q^{12}\) \(-291.683 q^{13}\) \(+(-902.686 - 168.194i) q^{14}\) \(+804.883 q^{15}\) \(+(637.655 - 1104.45i) q^{16}\) \(+(185.038 + 320.495i) q^{17}\) \(+(500.531 + 866.946i) q^{18}\) \(+(-752.463 + 1303.30i) q^{19}\) \(-1450.11 q^{20}\) \(+(-849.873 + 993.152i) q^{21}\) \(+2492.45 q^{22}\) \(+(212.855 - 368.676i) q^{23}\) \(+(-493.986 - 855.609i) q^{24}\) \(+(-1623.72 - 2812.37i) q^{25}\) \(+(1032.96 - 1789.14i) q^{26}\) \(+3875.19 q^{27}\) \(+(1531.17 - 1789.30i) q^{28}\) \(-7783.93 q^{29}\) \(+(-2850.40 + 4937.03i) q^{30}\) \(+(1287.59 + 2230.17i) q^{31}\) \(+(2948.58 + 5107.09i) q^{32}\) \(+(1774.08 - 3072.80i) q^{33}\) \(-2621.16 q^{34}\) \(+(10173.9 + 1895.67i) q^{35}\) \(-2567.48 q^{36}\) \(+(-369.809 + 640.528i) q^{37}\) \(+(-5329.51 - 9230.99i) q^{38}\) \(+(-1470.48 - 2546.95i) q^{39}\) \(+(-3911.01 + 6774.06i) q^{40}\) \(+7029.84 q^{41}\) \(+(-3082.13 - 8730.12i) q^{42}\) \(+1835.23 q^{43}\) \(+(-3196.26 + 5536.08i) q^{44}\) \(+(-5641.33 - 9771.08i) q^{45}\) \(+(1507.60 + 2611.25i) q^{46}\) \(+(766.342 - 1327.34i) q^{47}\) \(+12858.7 q^{48}\) \(+(-13081.7 + 10552.0i) q^{49}\) \(+23000.9 q^{50}\) \(+(-1865.69 + 3231.47i) q^{51}\) \(+(2649.28 + 4588.69i) q^{52}\) \(+(4768.73 + 8259.68i) q^{53}\) \(+(-13723.5 + 23769.8i) q^{54}\) \(-28091.6 q^{55}\) \(+(-4228.96 - 11978.5i) q^{56}\) \(-15173.8 q^{57}\) \(+(27565.9 - 47745.5i) q^{58}\) \(+(14837.0 + 25698.5i) q^{59}\) \(+(-7310.56 - 12662.3i) q^{60}\) \(+(23255.4 - 40279.5i) q^{61}\) \(-18239.4 q^{62}\) \(+(18013.3 + 3356.35i) q^{63}\) \(-958.246 q^{64}\) \(+(-11642.2 + 20164.8i) q^{65}\) \(+(12565.4 + 21763.9i) q^{66}\) \(+(-13373.0 - 23162.8i) q^{67}\) \(+(3361.31 - 5821.95i) q^{68}\) \(+4292.34 q^{69}\) \(+(-47657.4 + 55691.9i) q^{70}\) \(-14388.8 q^{71}\) \(+(-6924.59 + 11993.7i) q^{72}\) \(+(35047.6 + 60704.2i) q^{73}\) \(+(-2619.27 - 4536.71i) q^{74}\) \(+(16371.6 - 28356.5i) q^{75}\) \(+27337.8 q^{76}\) \(+(29661.8 - 34662.5i) q^{77}\) \(+20830.2 q^{78}\) \(+(13542.9 - 23457.0i) q^{79}\) \(+(-50902.5 - 88165.7i) q^{80}\) \(+(2363.74 + 4094.13i) q^{81}\) \(+(-24895.3 + 43120.0i) q^{82}\) \(-79755.4 q^{83}\) \(+(23343.3 + 4349.47i) q^{84}\) \(+29542.2 q^{85}\) \(+(-6499.26 + 11257.0i) q^{86}\) \(+(-39241.8 - 67968.8i) q^{87}\) \(+(17240.9 + 29862.1i) q^{88}\) \(+(-21788.7 + 37739.1i) q^{89}\) \(+79912.5 q^{90}\) \(+(-12588.6 - 35657.3i) q^{91}\) \(-7733.26 q^{92}\) \(+(-12982.4 + 22486.2i) q^{93}\) \(+(5427.82 + 9401.25i) q^{94}\) \(+(60067.3 + 104040. i) q^{95}\) \(+(-29729.8 + 51493.6i) q^{96}\) \(+103374. q^{97}\) \(+(-18397.5 - 117610. i) q^{98}\) \(-49737.3 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut +\mathstrut 8q^{3} \) \(\mathstrut -\mathstrut 12q^{4} \) \(\mathstrut +\mathstrut 38q^{5} \) \(\mathstrut -\mathstrut 164q^{6} \) \(\mathstrut -\mathstrut 168q^{7} \) \(\mathstrut +\mathstrut 192q^{8} \) \(\mathstrut +\mathstrut 380q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut -\mathstrut 2q^{2} \) \(\mathstrut +\mathstrut 8q^{3} \) \(\mathstrut -\mathstrut 12q^{4} \) \(\mathstrut +\mathstrut 38q^{5} \) \(\mathstrut -\mathstrut 164q^{6} \) \(\mathstrut -\mathstrut 168q^{7} \) \(\mathstrut +\mathstrut 192q^{8} \) \(\mathstrut +\mathstrut 380q^{9} \) \(\mathstrut +\mathstrut 778q^{10} \) \(\mathstrut -\mathstrut 424q^{11} \) \(\mathstrut +\mathstrut 196q^{12} \) \(\mathstrut -\mathstrut 1848q^{13} \) \(\mathstrut -\mathstrut 2674q^{14} \) \(\mathstrut +\mathstrut 1784q^{15} \) \(\mathstrut +\mathstrut 2064q^{16} \) \(\mathstrut +\mathstrut 2346q^{17} \) \(\mathstrut -\mathstrut 212q^{18} \) \(\mathstrut +\mathstrut 360q^{19} \) \(\mathstrut -\mathstrut 3416q^{20} \) \(\mathstrut -\mathstrut 1526q^{21} \) \(\mathstrut +\mathstrut 4252q^{22} \) \(\mathstrut +\mathstrut 12q^{23} \) \(\mathstrut -\mathstrut 1392q^{24} \) \(\mathstrut -\mathstrut 1872q^{25} \) \(\mathstrut -\mathstrut 1148q^{26} \) \(\mathstrut +\mathstrut 5744q^{27} \) \(\mathstrut +\mathstrut 2548q^{28} \) \(\mathstrut -\mathstrut 14104q^{29} \) \(\mathstrut -\mathstrut 5258q^{30} \) \(\mathstrut -\mathstrut 3548q^{31} \) \(\mathstrut +\mathstrut 8096q^{32} \) \(\mathstrut +\mathstrut 3398q^{33} \) \(\mathstrut +\mathstrut 14844q^{34} \) \(\mathstrut +\mathstrut 27496q^{35} \) \(\mathstrut -\mathstrut 2192q^{36} \) \(\mathstrut -\mathstrut 11090q^{37} \) \(\mathstrut -\mathstrut 20138q^{38} \) \(\mathstrut -\mathstrut 1624q^{39} \) \(\mathstrut -\mathstrut 15936q^{40} \) \(\mathstrut +\mathstrut 7000q^{41} \) \(\mathstrut -\mathstrut 3472q^{42} \) \(\mathstrut -\mathstrut 25360q^{43} \) \(\mathstrut -\mathstrut 5948q^{44} \) \(\mathstrut -\mathstrut 1300q^{45} \) \(\mathstrut +\mathstrut 5118q^{46} \) \(\mathstrut +\mathstrut 22956q^{47} \) \(\mathstrut +\mathstrut 22432q^{48} \) \(\mathstrut +\mathstrut 4900q^{49} \) \(\mathstrut +\mathstrut 59984q^{50} \) \(\mathstrut +\mathstrut 384q^{51} \) \(\mathstrut +\mathstrut 1400q^{52} \) \(\mathstrut -\mathstrut 3042q^{53} \) \(\mathstrut -\mathstrut 32546q^{54} \) \(\mathstrut -\mathstrut 50152q^{55} \) \(\mathstrut -\mathstrut 57792q^{56} \) \(\mathstrut -\mathstrut 38116q^{57} \) \(\mathstrut +\mathstrut 58852q^{58} \) \(\mathstrut +\mathstrut 65808q^{59} \) \(\mathstrut -\mathstrut 14084q^{60} \) \(\mathstrut +\mathstrut 42486q^{61} \) \(\mathstrut -\mathstrut 98724q^{62} \) \(\mathstrut -\mathstrut 4760q^{63} \) \(\mathstrut +\mathstrut 70912q^{64} \) \(\mathstrut +\mathstrut 3164q^{65} \) \(\mathstrut +\mathstrut 25894q^{66} \) \(\mathstrut -\mathstrut 42312q^{67} \) \(\mathstrut -\mathstrut 5460q^{68} \) \(\mathstrut +\mathstrut 10308q^{69} \) \(\mathstrut -\mathstrut 113050q^{70} \) \(\mathstrut -\mathstrut 4416q^{71} \) \(\mathstrut +\mathstrut 32448q^{72} \) \(\mathstrut +\mathstrut 50506q^{73} \) \(\mathstrut +\mathstrut 47370q^{74} \) \(\mathstrut +\mathstrut 35608q^{75} \) \(\mathstrut +\mathstrut 77672q^{76} \) \(\mathstrut +\mathstrut 65338q^{77} \) \(\mathstrut +\mathstrut 55048q^{78} \) \(\mathstrut -\mathstrut 9004q^{79} \) \(\mathstrut -\mathstrut 68816q^{80} \) \(\mathstrut -\mathstrut 51178q^{81} \) \(\mathstrut -\mathstrut 67732q^{82} \) \(\mathstrut -\mathstrut 208656q^{83} \) \(\mathstrut +\mathstrut 44492q^{84} \) \(\mathstrut -\mathstrut 106212q^{85} \) \(\mathstrut -\mathstrut 86776q^{86} \) \(\mathstrut -\mathstrut 80008q^{87} \) \(\mathstrut +\mathstrut 20496q^{88} \) \(\mathstrut +\mathstrut 26666q^{89} \) \(\mathstrut +\mathstrut 261304q^{90} \) \(\mathstrut +\mathstrut 135632q^{91} \) \(\mathstrut -\mathstrut 20568q^{92} \) \(\mathstrut -\mathstrut 38718q^{93} \) \(\mathstrut -\mathstrut 98034q^{94} \) \(\mathstrut +\mathstrut 198140q^{95} \) \(\mathstrut -\mathstrut 54880q^{96} \) \(\mathstrut +\mathstrut 418264q^{97} \) \(\mathstrut +\mathstrut 98686q^{98} \) \(\mathstrut -\mathstrut 133888q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.54138 + 6.13385i −0.626034 + 1.08432i 0.362306 + 0.932059i \(0.381989\pi\)
−0.988340 + 0.152263i \(0.951344\pi\)
\(3\) 5.04138 + 8.73193i 0.323405 + 0.560153i 0.981188 0.193054i \(-0.0618391\pi\)
−0.657783 + 0.753207i \(0.728506\pi\)
\(4\) −9.08276 15.7318i −0.283836 0.491619i
\(5\) 39.9138 69.1328i 0.714000 1.23668i −0.249344 0.968415i \(-0.580215\pi\)
0.963344 0.268269i \(-0.0864517\pi\)
\(6\) −71.4138 −0.809849
\(7\) 43.1587 + 122.247i 0.332907 + 0.942960i
\(8\) −97.9863 −0.541303
\(9\) 70.6689 122.402i 0.290819 0.503713i
\(10\) 282.700 + 489.651i 0.893976 + 1.54841i
\(11\) −175.952 304.757i −0.438442 0.759403i 0.559128 0.829082i \(-0.311136\pi\)
−0.997570 + 0.0696781i \(0.977803\pi\)
\(12\) 91.5793 158.620i 0.183588 0.317984i
\(13\) −291.683 −0.478688 −0.239344 0.970935i \(-0.576932\pi\)
−0.239344 + 0.970935i \(0.576932\pi\)
\(14\) −902.686 168.194i −1.23088 0.229346i
\(15\) 804.883 0.923644
\(16\) 637.655 1104.45i 0.622710 1.07857i
\(17\) 185.038 + 320.495i 0.155288 + 0.268967i 0.933164 0.359451i \(-0.117036\pi\)
−0.777876 + 0.628418i \(0.783703\pi\)
\(18\) 500.531 + 866.946i 0.364125 + 0.630682i
\(19\) −752.463 + 1303.30i −0.478190 + 0.828250i −0.999687 0.0250030i \(-0.992040\pi\)
0.521497 + 0.853253i \(0.325374\pi\)
\(20\) −1450.11 −0.810637
\(21\) −849.873 + 993.152i −0.420538 + 0.491437i
\(22\) 2492.45 1.09792
\(23\) 212.855 368.676i 0.0839006 0.145320i −0.821022 0.570897i \(-0.806596\pi\)
0.904922 + 0.425577i \(0.139929\pi\)
\(24\) −493.986 855.609i −0.175060 0.303213i
\(25\) −1623.72 2812.37i −0.519592 0.899960i
\(26\) 1032.96 1789.14i 0.299675 0.519052i
\(27\) 3875.19 1.02302
\(28\) 1531.17 1789.30i 0.369086 0.431310i
\(29\) −7783.93 −1.71872 −0.859358 0.511374i \(-0.829137\pi\)
−0.859358 + 0.511374i \(0.829137\pi\)
\(30\) −2850.40 + 4937.03i −0.578232 + 1.00153i
\(31\) 1287.59 + 2230.17i 0.240643 + 0.416805i 0.960898 0.276904i \(-0.0893085\pi\)
−0.720255 + 0.693710i \(0.755975\pi\)
\(32\) 2948.58 + 5107.09i 0.509024 + 0.881655i
\(33\) 1774.08 3072.80i 0.283588 0.491189i
\(34\) −2621.16 −0.388862
\(35\) 10173.9 + 1895.67i 1.40384 + 0.261572i
\(36\) −2567.48 −0.330180
\(37\) −369.809 + 640.528i −0.0444092 + 0.0769190i −0.887376 0.461047i \(-0.847474\pi\)
0.842966 + 0.537966i \(0.180807\pi\)
\(38\) −5329.51 9230.99i −0.598727 1.03703i
\(39\) −1470.48 2546.95i −0.154810 0.268139i
\(40\) −3911.01 + 6774.06i −0.386490 + 0.669421i
\(41\) 7029.84 0.653109 0.326554 0.945178i \(-0.394112\pi\)
0.326554 + 0.945178i \(0.394112\pi\)
\(42\) −3082.13 8730.12i −0.269604 0.763655i
\(43\) 1835.23 0.151363 0.0756816 0.997132i \(-0.475887\pi\)
0.0756816 + 0.997132i \(0.475887\pi\)
\(44\) −3196.26 + 5536.08i −0.248891 + 0.431093i
\(45\) −5641.33 9771.08i −0.415289 0.719302i
\(46\) 1507.60 + 2611.25i 0.105049 + 0.181950i
\(47\) 766.342 1327.34i 0.0506032 0.0876473i −0.839614 0.543183i \(-0.817219\pi\)
0.890217 + 0.455536i \(0.150552\pi\)
\(48\) 12858.7 0.805550
\(49\) −13081.7 + 10552.0i −0.778346 + 0.627836i
\(50\) 23000.9 1.30113
\(51\) −1865.69 + 3231.47i −0.100442 + 0.173970i
\(52\) 2649.28 + 4588.69i 0.135869 + 0.235332i
\(53\) 4768.73 + 8259.68i 0.233192 + 0.403900i 0.958746 0.284265i \(-0.0917497\pi\)
−0.725554 + 0.688165i \(0.758416\pi\)
\(54\) −13723.5 + 23769.8i −0.640444 + 1.10928i
\(55\) −28091.6 −1.25219
\(56\) −4228.96 11978.5i −0.180204 0.510427i
\(57\) −15173.8 −0.618596
\(58\) 27565.9 47745.5i 1.07597 1.86364i
\(59\) 14837.0 + 25698.5i 0.554903 + 0.961120i 0.997911 + 0.0646022i \(0.0205779\pi\)
−0.443008 + 0.896517i \(0.646089\pi\)
\(60\) −7310.56 12662.3i −0.262164 0.454081i
\(61\) 23255.4 40279.5i 0.800201 1.38599i −0.119282 0.992860i \(-0.538059\pi\)
0.919483 0.393129i \(-0.128607\pi\)
\(62\) −18239.4 −0.602602
\(63\) 18013.3 + 3356.35i 0.571796 + 0.106541i
\(64\) −958.246 −0.0292434
\(65\) −11642.2 + 20164.8i −0.341783 + 0.591985i
\(66\) 12565.4 + 21763.9i 0.355072 + 0.615002i
\(67\) −13373.0 23162.8i −0.363951 0.630381i 0.624656 0.780900i \(-0.285239\pi\)
−0.988607 + 0.150518i \(0.951906\pi\)
\(68\) 3361.31 5821.95i 0.0881527 0.152685i
\(69\) 4292.34 0.108535
\(70\) −47657.4 + 55691.9i −1.16248 + 1.35846i
\(71\) −14388.8 −0.338748 −0.169374 0.985552i \(-0.554175\pi\)
−0.169374 + 0.985552i \(0.554175\pi\)
\(72\) −6924.59 + 11993.7i −0.157421 + 0.272661i
\(73\) 35047.6 + 60704.2i 0.769752 + 1.33325i 0.937697 + 0.347453i \(0.112953\pi\)
−0.167946 + 0.985796i \(0.553713\pi\)
\(74\) −2619.27 4536.71i −0.0556033 0.0963078i
\(75\) 16371.6 28356.5i 0.336077 0.582102i
\(76\) 27337.8 0.542911
\(77\) 29661.8 34662.5i 0.570126 0.666244i
\(78\) 20830.2 0.387665
\(79\) 13542.9 23457.0i 0.244143 0.422868i −0.717748 0.696303i \(-0.754827\pi\)
0.961890 + 0.273436i \(0.0881601\pi\)
\(80\) −50902.5 88165.7i −0.889230 1.54019i
\(81\) 2363.74 + 4094.13i 0.0400302 + 0.0693344i
\(82\) −24895.3 + 43120.0i −0.408868 + 0.708181i
\(83\) −79755.4 −1.27076 −0.635382 0.772198i \(-0.719157\pi\)
−0.635382 + 0.772198i \(0.719157\pi\)
\(84\) 23343.3 + 4349.47i 0.360964 + 0.0672571i
\(85\) 29542.2 0.443502
\(86\) −6499.26 + 11257.0i −0.0947584 + 0.164126i
\(87\) −39241.8 67968.8i −0.555841 0.962745i
\(88\) 17240.9 + 29862.1i 0.237330 + 0.411067i
\(89\) −21788.7 + 37739.1i −0.291579 + 0.505029i −0.974183 0.225759i \(-0.927514\pi\)
0.682605 + 0.730788i \(0.260847\pi\)
\(90\) 79912.5 1.03994
\(91\) −12588.6 35657.3i −0.159358 0.451383i
\(92\) −7733.26 −0.0952561
\(93\) −12982.4 + 22486.2i −0.155650 + 0.269594i
\(94\) 5427.82 + 9401.25i 0.0633586 + 0.109740i
\(95\) 60067.3 + 104040.i 0.682856 + 1.18274i
\(96\) −29729.8 + 51493.6i −0.329241 + 0.570263i
\(97\) 103374. 1.11553 0.557765 0.829999i \(-0.311659\pi\)
0.557765 + 0.829999i \(0.311659\pi\)
\(98\) −18397.5 117610.i −0.193506 1.23702i
\(99\) −49737.3 −0.510028
\(100\) −29495.8 + 51088.3i −0.294958 + 0.510883i
\(101\) −14350.1 24855.1i −0.139975 0.242444i 0.787512 0.616300i \(-0.211369\pi\)
−0.927487 + 0.373855i \(0.878036\pi\)
\(102\) −13214.2 22887.7i −0.125760 0.217822i
\(103\) −14614.0 + 25312.1i −0.135730 + 0.235091i −0.925876 0.377828i \(-0.876671\pi\)
0.790146 + 0.612918i \(0.210005\pi\)
\(104\) 28580.9 0.259115
\(105\) 34737.7 + 98394.5i 0.307488 + 0.870959i
\(106\) −67551.6 −0.583944
\(107\) −43929.2 + 76087.6i −0.370932 + 0.642472i −0.989709 0.143094i \(-0.954295\pi\)
0.618778 + 0.785566i \(0.287628\pi\)
\(108\) −35197.4 60963.7i −0.290370 0.502935i
\(109\) −110314. 191069.i −0.889333 1.54037i −0.840665 0.541555i \(-0.817836\pi\)
−0.0486678 0.998815i \(-0.515498\pi\)
\(110\) 99483.2 172310.i 0.783913 1.35778i
\(111\) −7457.39 −0.0574486
\(112\) 162536. + 30284.8i 1.22435 + 0.228128i
\(113\) 39665.6 0.292225 0.146113 0.989268i \(-0.453324\pi\)
0.146113 + 0.989268i \(0.453324\pi\)
\(114\) 53736.2 93073.9i 0.387262 0.670758i
\(115\) −16991.7 29430.5i −0.119810 0.207517i
\(116\) 70699.6 + 122455.i 0.487834 + 0.844953i
\(117\) −20612.9 + 35702.6i −0.139211 + 0.241121i
\(118\) −210174. −1.38955
\(119\) −31193.5 + 36452.4i −0.201928 + 0.235971i
\(120\) −78867.5 −0.499971
\(121\) 18607.4 32229.0i 0.115538 0.200117i
\(122\) 164712. + 285290.i 1.00191 + 1.73535i
\(123\) 35440.1 + 61384.0i 0.211219 + 0.365841i
\(124\) 23389.7 40512.2i 0.136606 0.236609i
\(125\) −9774.87 −0.0559546
\(126\) −84379.3 + 98604.7i −0.473488 + 0.553313i
\(127\) 51740.3 0.284655 0.142328 0.989820i \(-0.454541\pi\)
0.142328 + 0.989820i \(0.454541\pi\)
\(128\) −90961.0 + 157549.i −0.490716 + 0.849946i
\(129\) 9252.11 + 16025.1i 0.0489515 + 0.0847866i
\(130\) −82458.7 142823.i −0.427935 0.741206i
\(131\) 83336.9 144344.i 0.424286 0.734885i −0.572067 0.820207i \(-0.693858\pi\)
0.996353 + 0.0853215i \(0.0271917\pi\)
\(132\) −64454.2 −0.321971
\(133\) −191800. 35737.4i −0.940200 0.175184i
\(134\) 189436. 0.911382
\(135\) 154674. 267902.i 0.730435 1.26515i
\(136\) −18131.2 31404.1i −0.0840578 0.145592i
\(137\) −14129.7 24473.4i −0.0643178 0.111402i 0.832073 0.554666i \(-0.187154\pi\)
−0.896391 + 0.443264i \(0.853820\pi\)
\(138\) −15200.8 + 26328.6i −0.0679468 + 0.117687i
\(139\) 336393. 1.47676 0.738380 0.674384i \(-0.235591\pi\)
0.738380 + 0.674384i \(0.235591\pi\)
\(140\) −62584.9 177272.i −0.269867 0.764398i
\(141\) 15453.7 0.0654612
\(142\) 50956.1 88258.5i 0.212068 0.367312i
\(143\) 51322.1 + 88892.4i 0.209877 + 0.363517i
\(144\) −90124.9 156101.i −0.362192 0.627334i
\(145\) −310686. + 538125.i −1.22716 + 2.12551i
\(146\) −496467. −1.92756
\(147\) −158089. 61031.3i −0.603405 0.232948i
\(148\) 13435.5 0.0504198
\(149\) 177691. 307769.i 0.655691 1.13569i −0.326030 0.945360i \(-0.605711\pi\)
0.981720 0.190330i \(-0.0609557\pi\)
\(150\) 115956. + 200842.i 0.420791 + 0.728832i
\(151\) 179399. + 310727.i 0.640290 + 1.10901i 0.985368 + 0.170441i \(0.0545191\pi\)
−0.345078 + 0.938574i \(0.612148\pi\)
\(152\) 73731.0 127706.i 0.258846 0.448334i
\(153\) 52305.7 0.180643
\(154\) 107571. + 304694.i 0.365504 + 1.03529i
\(155\) 205570. 0.687275
\(156\) −26712.1 + 46266.7i −0.0878813 + 0.152215i
\(157\) −229455. 397428.i −0.742932 1.28680i −0.951155 0.308714i \(-0.900101\pi\)
0.208223 0.978081i \(-0.433232\pi\)
\(158\) 95921.1 + 166140.i 0.305683 + 0.529459i
\(159\) −48082.0 + 83280.4i −0.150831 + 0.261246i
\(160\) 470756. 1.45377
\(161\) 54256.1 + 10109.3i 0.164962 + 0.0307368i
\(162\) −33483.7 −0.100241
\(163\) −251220. + 435126.i −0.740603 + 1.28276i 0.211618 + 0.977353i \(0.432127\pi\)
−0.952221 + 0.305410i \(0.901206\pi\)
\(164\) −63850.3 110592.i −0.185376 0.321081i
\(165\) −141621. 245294.i −0.404964 0.701418i
\(166\) 282444. 489208.i 0.795541 1.37792i
\(167\) −676652. −1.87748 −0.938738 0.344632i \(-0.888004\pi\)
−0.938738 + 0.344632i \(0.888004\pi\)
\(168\) 83275.9 97315.3i 0.227639 0.266016i
\(169\) −286214. −0.770858
\(170\) −104620. + 181208.i −0.277647 + 0.480900i
\(171\) 106351. + 184206.i 0.278133 + 0.481741i
\(172\) −16669.0 28871.5i −0.0429623 0.0744130i
\(173\) 124580. 215779.i 0.316470 0.548143i −0.663279 0.748373i \(-0.730836\pi\)
0.979749 + 0.200230i \(0.0641689\pi\)
\(174\) 555880. 1.39190
\(175\) 273726. 319874.i 0.675650 0.789557i
\(176\) −448786. −1.09209
\(177\) −149598. + 259112.i −0.358916 + 0.621661i
\(178\) −154324. 267297.i −0.365076 0.632330i
\(179\) −69628.9 120601.i −0.162427 0.281331i 0.773312 0.634026i \(-0.218599\pi\)
−0.935738 + 0.352695i \(0.885265\pi\)
\(180\) −102478. + 177497.i −0.235748 + 0.408328i
\(181\) 306246. 0.694823 0.347412 0.937713i \(-0.387061\pi\)
0.347412 + 0.937713i \(0.387061\pi\)
\(182\) 263298. + 49059.4i 0.589209 + 0.109785i
\(183\) 468957. 1.03516
\(184\) −20856.9 + 36125.2i −0.0454156 + 0.0786622i
\(185\) 29521.0 + 51131.8i 0.0634163 + 0.109840i
\(186\) −91951.5 159265.i −0.194884 0.337549i
\(187\) 65115.4 112783.i 0.136169 0.235852i
\(188\) −27842.0 −0.0574521
\(189\) 167248. + 473730.i 0.340570 + 0.964665i
\(190\) −850885. −1.70996
\(191\) −113747. + 197015.i −0.225609 + 0.390766i −0.956502 0.291726i \(-0.905770\pi\)
0.730893 + 0.682492i \(0.239104\pi\)
\(192\) −4830.89 8367.34i −0.00945744 0.0163808i
\(193\) 336187. + 582293.i 0.649663 + 1.12525i 0.983203 + 0.182513i \(0.0584231\pi\)
−0.333541 + 0.942736i \(0.608244\pi\)
\(194\) −366086. + 634079.i −0.698359 + 1.20959i
\(195\) −234770. −0.442137
\(196\) 284820. + 109956.i 0.529579 + 0.204447i
\(197\) −1282.76 −0.00235493 −0.00117747 0.999999i \(-0.500375\pi\)
−0.00117747 + 0.999999i \(0.500375\pi\)
\(198\) 176139. 305081.i 0.319295 0.553035i
\(199\) −184449. 319475.i −0.330175 0.571879i 0.652371 0.757900i \(-0.273774\pi\)
−0.982546 + 0.186020i \(0.940441\pi\)
\(200\) 159103. + 275574.i 0.281257 + 0.487151i
\(201\) 134837. 233545.i 0.235407 0.407737i
\(202\) 203277. 0.350517
\(203\) −335944. 951563.i −0.572173 1.62068i
\(204\) 67782.5 0.114036
\(205\) 280588. 485992.i 0.466320 0.807690i
\(206\) −103507. 179280.i −0.169943 0.294349i
\(207\) −30084.5 52107.9i −0.0487997 0.0845236i
\(208\) −185993. + 322149.i −0.298084 + 0.516296i
\(209\) 529589. 0.838635
\(210\) −726557. 135377.i −1.13690 0.211834i
\(211\) 502168. 0.776503 0.388251 0.921553i \(-0.373079\pi\)
0.388251 + 0.921553i \(0.373079\pi\)
\(212\) 86626.5 150042.i 0.132377 0.229283i
\(213\) −72539.2 125642.i −0.109553 0.189751i
\(214\) −311140. 538910.i −0.464431 0.804419i
\(215\) 73251.1 126875.i 0.108073 0.187188i
\(216\) −379715. −0.553763
\(217\) −217061. + 253655.i −0.312919 + 0.365674i
\(218\) 1.56266e6 2.22701
\(219\) −353376. + 612066.i −0.497883 + 0.862358i
\(220\) 255150. + 441932.i 0.355417 + 0.615600i
\(221\) −53972.3 93482.7i −0.0743344 0.128751i
\(222\) 26409.5 45742.5i 0.0359647 0.0622928i
\(223\) −1.17328e6 −1.57993 −0.789967 0.613149i \(-0.789902\pi\)
−0.789967 + 0.613149i \(0.789902\pi\)
\(224\) −497070. + 580870.i −0.661907 + 0.773498i
\(225\) −458988. −0.604428
\(226\) −140471. + 243303.i −0.182943 + 0.316867i
\(227\) 455079. + 788220.i 0.586168 + 1.01527i 0.994729 + 0.102542i \(0.0326977\pi\)
−0.408560 + 0.912731i \(0.633969\pi\)
\(228\) 137820. + 238711.i 0.175580 + 0.304114i
\(229\) −260962. + 452000.i −0.328843 + 0.569573i −0.982283 0.187406i \(-0.939992\pi\)
0.653439 + 0.756979i \(0.273325\pi\)
\(230\) 240697. 0.300020
\(231\) 452207. + 84258.1i 0.557580 + 0.103892i
\(232\) 762719. 0.930346
\(233\) 521394. 903081.i 0.629182 1.08977i −0.358535 0.933516i \(-0.616723\pi\)
0.987716 0.156258i \(-0.0499432\pi\)
\(234\) −145996. 252873.i −0.174302 0.301900i
\(235\) −61175.2 105959.i −0.0722613 0.125160i
\(236\) 269522. 466826.i 0.315003 0.545601i
\(237\) 273100. 0.315828
\(238\) −113126. 320428.i −0.129455 0.366681i
\(239\) −1.53447e6 −1.73766 −0.868830 0.495110i \(-0.835128\pi\)
−0.868830 + 0.495110i \(0.835128\pi\)
\(240\) 513238. 888954.i 0.575163 0.996211i
\(241\) 503789. + 872588.i 0.558735 + 0.967758i 0.997602 + 0.0692059i \(0.0220465\pi\)
−0.438867 + 0.898552i \(0.644620\pi\)
\(242\) 131792. + 228271.i 0.144661 + 0.250560i
\(243\) 447002. 774231.i 0.485617 0.841114i
\(244\) −844893. −0.908505
\(245\) 207353. + 1.32554e6i 0.220696 + 1.41084i
\(246\) −502028. −0.528920
\(247\) 219480. 380151.i 0.228904 0.396473i
\(248\) −126166. 218526.i −0.130261 0.225618i
\(249\) −402077. 696419.i −0.410971 0.711823i
\(250\) 34616.6 59957.6i 0.0350295 0.0606729i
\(251\) 8511.89 0.00852789 0.00426394 0.999991i \(-0.498643\pi\)
0.00426394 + 0.999991i \(0.498643\pi\)
\(252\) −110809. 313866.i −0.109919 0.311346i
\(253\) −149809. −0.147142
\(254\) −183232. + 317367.i −0.178204 + 0.308658i
\(255\) 148934. + 257961.i 0.143431 + 0.248429i
\(256\) −659587. 1.14244e6i −0.629032 1.08951i
\(257\) 263766. 456856.i 0.249107 0.431466i −0.714171 0.699971i \(-0.753196\pi\)
0.963278 + 0.268505i \(0.0865295\pi\)
\(258\) −131061. −0.122581
\(259\) −94263.0 17563.7i −0.0873156 0.0162692i
\(260\) 422972. 0.388042
\(261\) −550082. + 952771.i −0.499835 + 0.865739i
\(262\) 590255. + 1.02235e6i 0.531235 + 0.920126i
\(263\) 176042. + 304914.i 0.156938 + 0.271824i 0.933763 0.357892i \(-0.116504\pi\)
−0.776825 + 0.629716i \(0.783171\pi\)
\(264\) −173836. + 301092.i −0.153507 + 0.265882i
\(265\) 761353. 0.665996
\(266\) 898446. 1.04991e6i 0.778552 0.909808i
\(267\) −439380. −0.377192
\(268\) −242928. + 420764.i −0.206605 + 0.357850i
\(269\) −239770. 415294.i −0.202029 0.349925i 0.747153 0.664652i \(-0.231420\pi\)
−0.949182 + 0.314727i \(0.898087\pi\)
\(270\) 1.09552e6 + 1.89749e6i 0.914554 + 1.58405i
\(271\) 488805. 846636.i 0.404308 0.700283i −0.589932 0.807453i \(-0.700846\pi\)
0.994241 + 0.107170i \(0.0341789\pi\)
\(272\) 471961. 0.386798
\(273\) 247893. 289685.i 0.201307 0.235245i
\(274\) 200155. 0.161061
\(275\) −571395. + 989684.i −0.455622 + 0.789160i
\(276\) −38986.3 67526.2i −0.0308063 0.0533580i
\(277\) −484362. 838939.i −0.379289 0.656948i 0.611670 0.791113i \(-0.290498\pi\)
−0.990959 + 0.134165i \(0.957165\pi\)
\(278\) −1.19130e6 + 2.06339e6i −0.924502 + 1.60128i
\(279\) 363970. 0.279934
\(280\) −996903. 185749.i −0.759902 0.141590i
\(281\) −318333. −0.240501 −0.120250 0.992744i \(-0.538370\pi\)
−0.120250 + 0.992744i \(0.538370\pi\)
\(282\) −54727.4 + 94790.6i −0.0409809 + 0.0709811i
\(283\) −886051. 1.53468e6i −0.657646 1.13908i −0.981223 0.192875i \(-0.938219\pi\)
0.323577 0.946202i \(-0.395115\pi\)
\(284\) 130690. + 226361.i 0.0961491 + 0.166535i
\(285\) −605644. + 1.04901e6i −0.441678 + 0.765008i
\(286\) −727004. −0.525559
\(287\) 303398. + 859377.i 0.217425 + 0.615855i
\(288\) 833492. 0.592134
\(289\) 641451. 1.11103e6i 0.451771 0.782491i
\(290\) −2.20052e6 3.81141e6i −1.53649 2.66128i
\(291\) 521147. + 902652.i 0.360768 + 0.624868i
\(292\) 636657. 1.10272e6i 0.436967 0.756849i
\(293\) 1.64148e6 1.11703 0.558516 0.829494i \(-0.311371\pi\)
0.558516 + 0.829494i \(0.311371\pi\)
\(294\) 934211. 753561.i 0.630343 0.508452i
\(295\) 2.36881e6 1.58480
\(296\) 36236.2 62762.9i 0.0240388 0.0416365i
\(297\) −681846. 1.18099e6i −0.448534 0.776883i
\(298\) 1.25854e6 + 2.17986e6i 0.820969 + 1.42196i
\(299\) −62086.2 + 107536.i −0.0401622 + 0.0695629i
\(300\) −594799. −0.381563
\(301\) 79206.2 + 224352.i 0.0503898 + 0.142729i
\(302\) −2.54128e6 −1.60337
\(303\) 144689. 250608.i 0.0905374 0.156815i
\(304\) 959623. + 1.66212e6i 0.595548 + 1.03152i
\(305\) −1.85642e6 3.21542e6i −1.14269 1.97919i
\(306\) −185234. + 320835.i −0.113088 + 0.195875i
\(307\) −466930. −0.282752 −0.141376 0.989956i \(-0.545153\pi\)
−0.141376 + 0.989956i \(0.545153\pi\)
\(308\) −814715. 151803.i −0.489361 0.0911808i
\(309\) −294698. −0.175582
\(310\) −728002. + 1.26094e6i −0.430257 + 0.745228i
\(311\) 1.21898e6 + 2.11134e6i 0.714654 + 1.23782i 0.963093 + 0.269169i \(0.0867490\pi\)
−0.248439 + 0.968647i \(0.579918\pi\)
\(312\) 144087. + 249566.i 0.0837990 + 0.145144i
\(313\) −1.21047e6 + 2.09659e6i −0.698381 + 1.20963i 0.270646 + 0.962679i \(0.412763\pi\)
−0.969028 + 0.246953i \(0.920571\pi\)
\(314\) 3.25035e6 1.86040
\(315\) 951012. 1.11134e6i 0.540020 0.631062i
\(316\) −492028. −0.277186
\(317\) −938057. + 1.62476e6i −0.524301 + 0.908116i 0.475298 + 0.879825i \(0.342340\pi\)
−0.999600 + 0.0282918i \(0.990993\pi\)
\(318\) −340553. 589856.i −0.188850 0.327098i
\(319\) 1.36960e6 + 2.37221e6i 0.753557 + 1.30520i
\(320\) −38247.3 + 66246.2i −0.0208798 + 0.0361648i
\(321\) −885855. −0.479844
\(322\) −254151. + 296998.i −0.136600 + 0.159630i
\(323\) −556936. −0.297029
\(324\) 42938.7 74371.9i 0.0227241 0.0393592i
\(325\) 473612. + 820321.i 0.248722 + 0.430800i
\(326\) −1.77933e6 3.08190e6i −0.927285 1.60611i
\(327\) 1.11227e6 1.92651e6i 0.575229 0.996326i
\(328\) −688828. −0.353530
\(329\) 195338. + 36396.6i 0.0994940 + 0.0185384i
\(330\) 2.00613e6 1.01408
\(331\) 541549. 937990.i 0.271686 0.470575i −0.697607 0.716480i \(-0.745752\pi\)
0.969294 + 0.245906i \(0.0790853\pi\)
\(332\) 724399. + 1.25470e6i 0.360689 + 0.624732i
\(333\) 52268.0 + 90530.8i 0.0258301 + 0.0447390i
\(334\) 2.39628e6 4.15048e6i 1.17536 2.03579i
\(335\) −2.13507e6 −1.03944
\(336\) 554962. + 1.57193e6i 0.268173 + 0.759601i
\(337\) −2.59465e6 −1.24453 −0.622263 0.782809i \(-0.713786\pi\)
−0.622263 + 0.782809i \(0.713786\pi\)
\(338\) 1.01359e6 1.75560e6i 0.482583 0.835859i
\(339\) 199969. + 346357.i 0.0945071 + 0.163691i
\(340\) −268325. 464753.i −0.125882 0.218034i
\(341\) 453107. 784804.i 0.211016 0.365490i
\(342\) −1.50652e6 −0.696484
\(343\) −1.85454e6 1.14378e6i −0.851141 0.524938i
\(344\) −179828. −0.0819333
\(345\) 171324. 296741.i 0.0774943 0.134224i
\(346\) 882371. + 1.52831e6i 0.396242 + 0.686312i
\(347\) 935255. + 1.61991e6i 0.416972 + 0.722216i 0.995633 0.0933518i \(-0.0297581\pi\)
−0.578662 + 0.815568i \(0.696425\pi\)
\(348\) −712847. + 1.23469e6i −0.315536 + 0.546524i
\(349\) −1.61685e6 −0.710568 −0.355284 0.934758i \(-0.615616\pi\)
−0.355284 + 0.934758i \(0.615616\pi\)
\(350\) 992689. + 2.81179e6i 0.433155 + 1.22691i
\(351\) −1.13033e6 −0.489706
\(352\) 1.03762e6 1.79720e6i 0.446354 0.773109i
\(353\) 289153. + 500827.i 0.123507 + 0.213920i 0.921148 0.389212i \(-0.127253\pi\)
−0.797642 + 0.603132i \(0.793919\pi\)
\(354\) −1.05957e6 1.83523e6i −0.449387 0.778362i
\(355\) −574310. + 994734.i −0.241866 + 0.418925i
\(356\) 791605. 0.331042
\(357\) −475558. 88609.1i −0.197485 0.0367966i
\(358\) 986330. 0.406738
\(359\) 984090. 1.70449e6i 0.402994 0.698006i −0.591092 0.806604i \(-0.701303\pi\)
0.994086 + 0.108598i \(0.0346362\pi\)
\(360\) 552773. + 957432.i 0.224797 + 0.389360i
\(361\) 105650. + 182990.i 0.0426677 + 0.0739027i
\(362\) −1.08453e6 + 1.87847e6i −0.434983 + 0.753412i
\(363\) 375229. 0.149462
\(364\) −446615. + 521909.i −0.176677 + 0.206463i
\(365\) 5.59553e6 2.19841
\(366\) −1.66076e6 + 2.87651e6i −0.648042 + 1.12244i
\(367\) −1.08726e6 1.88319e6i −0.421375 0.729842i 0.574700 0.818364i \(-0.305119\pi\)
−0.996074 + 0.0885223i \(0.971786\pi\)
\(368\) −271457. 470177.i −0.104491 0.180985i
\(369\) 496791. 860468.i 0.189936 0.328979i
\(370\) −418180. −0.158803
\(371\) −803910. + 939440.i −0.303230 + 0.354352i
\(372\) 471666. 0.176716
\(373\) −692379. + 1.19924e6i −0.257675 + 0.446306i −0.965619 0.259963i \(-0.916290\pi\)
0.707944 + 0.706269i \(0.249623\pi\)
\(374\) 461197. + 798817.i 0.170493 + 0.295303i
\(375\) −49278.9 85353.5i −0.0180960 0.0313432i
\(376\) −75091.0 + 130061.i −0.0273916 + 0.0474437i
\(377\) 2.27044e6 0.822728
\(378\) −3.49808e6 651784.i −1.25922 0.234625i
\(379\) 3.37190e6 1.20580 0.602902 0.797815i \(-0.294011\pi\)
0.602902 + 0.797815i \(0.294011\pi\)
\(380\) 1.09115e6 1.88993e6i 0.387639 0.671410i
\(381\) 260842. + 451792.i 0.0920589 + 0.159451i
\(382\) −805642. 1.39541e6i −0.282478 0.489265i
\(383\) −1.64030e6 + 2.84108e6i −0.571382 + 0.989662i 0.425043 + 0.905173i \(0.360259\pi\)
−0.996424 + 0.0844886i \(0.973074\pi\)
\(384\) −1.83428e6 −0.634800
\(385\) −1.21240e6 3.43412e6i −0.416863 1.18076i
\(386\) −4.76227e6 −1.62684
\(387\) 129694. 224637.i 0.0440192 0.0762435i
\(388\) −938919. 1.62626e6i −0.316628 0.548415i
\(389\) 1.47405e6 + 2.55313e6i 0.493899 + 0.855457i 0.999975 0.00703108i \(-0.00223808\pi\)
−0.506077 + 0.862488i \(0.668905\pi\)
\(390\) 831412. 1.44005e6i 0.276793 0.479419i
\(391\) 157545. 0.0521150
\(392\) 1.28182e6 1.03396e6i 0.421321 0.339849i
\(393\) 1.68053e6 0.548865
\(394\) 4542.73 7868.24i 0.00147427 0.00255351i
\(395\) −1.08110e6 1.87251e6i −0.348636 0.603855i
\(396\) 451752. + 782458.i 0.144765 + 0.250740i
\(397\) 34635.1 59989.7i 0.0110291 0.0191030i −0.860458 0.509521i \(-0.829823\pi\)
0.871487 + 0.490418i \(0.163156\pi\)
\(398\) 2.61282e6 0.826802
\(399\) −654881. 1.85495e6i −0.205935 0.583311i
\(400\) −4.14151e6 −1.29422
\(401\) 1.67393e6 2.89933e6i 0.519848 0.900404i −0.479886 0.877331i \(-0.659322\pi\)
0.999734 0.0230725i \(-0.00734485\pi\)
\(402\) 955019. + 1.65414e6i 0.294745 + 0.510514i
\(403\) −375567. 650501.i −0.115193 0.199520i
\(404\) −260677. + 451506.i −0.0794602 + 0.137629i
\(405\) 377384. 0.114326
\(406\) 7.02645e6 + 1.30921e6i 2.11554 + 0.394181i
\(407\) 260274. 0.0778834
\(408\) 182812. 316640.i 0.0543694 0.0941706i
\(409\) −1.45608e6 2.52201e6i −0.430406 0.745485i 0.566502 0.824060i \(-0.308296\pi\)
−0.996908 + 0.0785754i \(0.974963\pi\)
\(410\) 1.98734e6 + 3.44217e6i 0.583864 + 1.01128i
\(411\) 142466. 246759.i 0.0416014 0.0720557i
\(412\) 530940. 0.154100
\(413\) −2.50122e6 + 2.92289e6i −0.721566 + 0.843214i
\(414\) 426163. 0.122201
\(415\) −3.18334e6 + 5.51371e6i −0.907326 + 1.57153i
\(416\) −860050. 1.48965e6i −0.243663 0.422037i
\(417\) 1.69589e6 + 2.93736e6i 0.477592 + 0.827213i
\(418\) −1.87547e6 + 3.24842e6i −0.525014 + 0.909350i
\(419\) −4.62361e6 −1.28661 −0.643304 0.765611i \(-0.722437\pi\)
−0.643304 + 0.765611i \(0.722437\pi\)
\(420\) 1.23241e6 1.44018e6i 0.340904 0.398377i
\(421\) −2.63042e6 −0.723303 −0.361652 0.932313i \(-0.617787\pi\)
−0.361652 + 0.932313i \(0.617787\pi\)
\(422\) −1.77837e6 + 3.08023e6i −0.486117 + 0.841979i
\(423\) −108313. 187604.i −0.0294327 0.0509789i
\(424\) −467270. 809336.i −0.126227 0.218632i
\(425\) 600901. 1.04079e6i 0.161373 0.279506i
\(426\) 1.02756e6 0.274335
\(427\) 5.92772e6 + 1.10449e6i 1.57332 + 0.293152i
\(428\) 1.59599e6 0.421135
\(429\) −517468. + 896281.i −0.135750 + 0.235126i
\(430\) 518820. + 898623.i 0.135315 + 0.234372i
\(431\) −3.77064e6 6.53094e6i −0.977736 1.69349i −0.670592 0.741826i \(-0.733960\pi\)
−0.307144 0.951663i \(-0.599373\pi\)
\(432\) 2.47103e6 4.27996e6i 0.637044 1.10339i
\(433\) 5.83558e6 1.49577 0.747883 0.663830i \(-0.231070\pi\)
0.747883 + 0.663830i \(0.231070\pi\)
\(434\) −787186. 2.22971e6i −0.200610 0.568229i
\(435\) −6.26516e6 −1.58748
\(436\) −2.00391e6 + 3.47088e6i −0.504850 + 0.874426i
\(437\) 320331. + 554830.i 0.0802409 + 0.138981i
\(438\) −2.50288e6 4.33512e6i −0.623383 1.07973i
\(439\) −84051.9 + 145582.i −0.0208155 + 0.0360535i −0.876246 0.481865i \(-0.839960\pi\)
0.855430 + 0.517918i \(0.173293\pi\)
\(440\) 2.75259e6 0.677814
\(441\) 367126. + 2.34693e6i 0.0898914 + 0.574649i
\(442\) 764546. 0.186143
\(443\) 1.42076e6 2.46082e6i 0.343962 0.595760i −0.641203 0.767372i \(-0.721564\pi\)
0.985165 + 0.171612i \(0.0548975\pi\)
\(444\) 67733.7 + 117318.i 0.0163060 + 0.0282428i
\(445\) 1.73934e6 + 3.01262e6i 0.416374 + 0.721181i
\(446\) 4.15503e6 7.19672e6i 0.989092 1.71316i
\(447\) 3.58323e6 0.848214
\(448\) −41356.6 117143.i −0.00973532 0.0275753i
\(449\) −1.41567e6 −0.331396 −0.165698 0.986177i \(-0.552988\pi\)
−0.165698 + 0.986177i \(0.552988\pi\)
\(450\) 1.62545e6 2.81536e6i 0.378392 0.655395i
\(451\) −1.23691e6 2.14240e6i −0.286350 0.495973i
\(452\) −360273. 624012.i −0.0829442 0.143664i
\(453\) −1.80883e6 + 3.13299e6i −0.414146 + 0.717321i
\(454\) −6.44644e6 −1.46784
\(455\) −2.96755e6 552933.i −0.672000 0.125211i
\(456\) 1.48682e6 0.334848
\(457\) −778637. + 1.34864e6i −0.174399 + 0.302068i −0.939953 0.341303i \(-0.889132\pi\)
0.765554 + 0.643372i \(0.222465\pi\)
\(458\) −1.84833e6 3.20141e6i −0.411734 0.713144i
\(459\) 717056. + 1.24198e6i 0.158862 + 0.275158i
\(460\) −308664. + 534621.i −0.0680129 + 0.117802i
\(461\) −4.45345e6 −0.975987 −0.487994 0.872847i \(-0.662271\pi\)
−0.487994 + 0.872847i \(0.662271\pi\)
\(462\) −2.11826e6 + 2.47538e6i −0.461716 + 0.539557i
\(463\) 4.92263e6 1.06720 0.533599 0.845738i \(-0.320839\pi\)
0.533599 + 0.845738i \(0.320839\pi\)
\(464\) −4.96347e6 + 8.59698e6i −1.07026 + 1.85375i
\(465\) 1.03636e6 + 1.79502e6i 0.222268 + 0.384980i
\(466\) 3.69291e6 + 6.39631e6i 0.787778 + 1.36447i
\(467\) −2.54545e6 + 4.40885e6i −0.540098 + 0.935477i 0.458800 + 0.888540i \(0.348280\pi\)
−0.998898 + 0.0469376i \(0.985054\pi\)
\(468\) 748889. 0.158053
\(469\) 2.25442e6 2.63449e6i 0.473262 0.553049i
\(470\) 866579. 0.180952
\(471\) 2.31354e6 4.00717e6i 0.480535 0.832312i
\(472\) −1.45383e6 2.51810e6i −0.300370 0.520257i
\(473\) −322912. 559301.i −0.0663639 0.114946i
\(474\) −967150. + 1.67515e6i −0.197719 + 0.342459i
\(475\) 4.88717e6 0.993856
\(476\) 856786. + 159642.i 0.173322 + 0.0322946i
\(477\) 1.34800e6 0.271266
\(478\) 5.43416e6 9.41224e6i 1.08783 1.88418i
\(479\) 4.15042e6 + 7.18874e6i 0.826521 + 1.43158i 0.900752 + 0.434334i \(0.143016\pi\)
−0.0742312 + 0.997241i \(0.523650\pi\)
\(480\) 2.37326e6 + 4.11061e6i 0.470157 + 0.814335i
\(481\) 107867. 186831.i 0.0212581 0.0368202i
\(482\) −7.13644e6 −1.39915
\(483\) 185252. + 524726.i 0.0361322 + 0.102344i
\(484\) −676028. −0.131175
\(485\) 4.12604e6 7.14651e6i 0.796488 1.37956i
\(486\) 3.16601e6 + 5.48369e6i 0.608025 + 1.05313i
\(487\) −4.31701e6 7.47727e6i −0.824822 1.42863i −0.902055 0.431621i \(-0.857942\pi\)
0.0772330 0.997013i \(-0.475391\pi\)
\(488\) −2.27871e6 + 3.94684e6i −0.433151 + 0.750240i
\(489\) −5.06599e6 −0.958059
\(490\) −8.86500e6 3.42238e6i −1.66797 0.643930i
\(491\) 95039.5 0.0177910 0.00889550 0.999960i \(-0.497168\pi\)
0.00889550 + 0.999960i \(0.497168\pi\)
\(492\) 643788. 1.11507e6i 0.119903 0.207678i
\(493\) −1.44032e6 2.49471e6i −0.266896 0.462277i
\(494\) 1.55453e6 + 2.69252e6i 0.286603 + 0.496411i
\(495\) −1.98521e6 + 3.43848e6i −0.364160 + 0.630744i
\(496\) 3.28415e6 0.599402
\(497\) −621000. 1.75898e6i −0.112772 0.319426i
\(498\) 5.69564e6 1.02913
\(499\) −1.07102e6 + 1.85506e6i −0.192551 + 0.333507i −0.946095 0.323890i \(-0.895009\pi\)
0.753544 + 0.657397i \(0.228343\pi\)
\(500\) 88782.9 + 153776.i 0.0158820 + 0.0275084i
\(501\) −3.41126e6 5.90848e6i −0.607185 1.05167i
\(502\) −30143.8 + 52210.7i −0.00533875 + 0.00924698i
\(503\) 5.24794e6 0.924844 0.462422 0.886660i \(-0.346981\pi\)
0.462422 + 0.886660i \(0.346981\pi\)
\(504\) −1.76505e6 328876.i −0.309515 0.0576708i
\(505\) −2.29107e6 −0.399769
\(506\) 530531. 918907.i 0.0921159 0.159549i
\(507\) −1.44292e6 2.49920e6i −0.249299 0.431799i
\(508\) −469945. 813968.i −0.0807956 0.139942i
\(509\) 5.29453e6 9.17040e6i 0.905802 1.56889i 0.0859643 0.996298i \(-0.472603\pi\)
0.819837 0.572596i \(-0.194064\pi\)
\(510\) −2.10972e6 −0.359170
\(511\) −5.90829e6 + 6.90437e6i −1.00094 + 1.16969i
\(512\) 3.52190e6 0.593747
\(513\) −2.91593e6 + 5.05055e6i −0.489198 + 0.847315i
\(514\) 1.86819e6 + 3.23580e6i 0.311899 + 0.540225i
\(515\) 1.16660e6 + 2.02061e6i 0.193822 + 0.335709i
\(516\) 168069. 291105.i 0.0277885 0.0481310i
\(517\) −539357. −0.0887462
\(518\) 441554. 515996.i 0.0723036 0.0844932i
\(519\) 2.51222e6 0.409392
\(520\) 1.14077e6 1.97588e6i 0.185008 0.320443i
\(521\) 2.27232e6 + 3.93578e6i 0.366755 + 0.635238i 0.989056 0.147540i \(-0.0471354\pi\)
−0.622301 + 0.782778i \(0.713802\pi\)
\(522\) −3.89610e6 6.74825e6i −0.625827 1.08396i
\(523\) 2.63599e6 4.56566e6i 0.421394 0.729877i −0.574682 0.818377i \(-0.694874\pi\)
0.996076 + 0.0885004i \(0.0282075\pi\)
\(524\) −3.02772e6 −0.481711
\(525\) 4.17307e6 + 777554.i 0.660782 + 0.123121i
\(526\) −2.49373e6 −0.392993
\(527\) −476504. + 825330.i −0.0747378 + 0.129450i
\(528\) −2.26250e6 3.91877e6i −0.353187 0.611737i
\(529\) 3.12756e6 + 5.41709e6i 0.485921 + 0.841641i
\(530\) −2.69624e6 + 4.67003e6i −0.416936 + 0.722154i
\(531\) 4.19407e6 0.645504
\(532\) 1.17986e6 + 3.34196e6i 0.180739 + 0.511943i
\(533\) −2.05048e6 −0.312635
\(534\) 1.55601e6 2.69509e6i 0.236135 0.408997i
\(535\) 3.50676e6 + 6.07389e6i 0.529690 + 0.917451i
\(536\) 1.31037e6 + 2.26963e6i 0.197008 + 0.341227i
\(537\) 702052. 1.21599e6i 0.105059 0.181968i
\(538\) 3.39647e6 0.505908
\(539\) 5.51755e6 + 2.13008e6i 0.818040 + 0.315809i
\(540\) −5.61945e6 −0.829296
\(541\) −2.96723e6 + 5.13939e6i −0.435871 + 0.754950i −0.997366 0.0725298i \(-0.976893\pi\)
0.561496 + 0.827480i \(0.310226\pi\)
\(542\) 3.46209e6 + 5.99652e6i 0.506221 + 0.876801i
\(543\) 1.54390e6 + 2.67412e6i 0.224709 + 0.389208i
\(544\) −1.09120e6 + 1.89001e6i −0.158091 + 0.273821i
\(545\) −1.76122e7 −2.53994
\(546\) 899003. + 2.54643e6i 0.129056 + 0.365552i
\(547\) −8.82017e6 −1.26040 −0.630200 0.776433i \(-0.717027\pi\)
−0.630200 + 0.776433i \(0.717027\pi\)
\(548\) −256673. + 444571.i −0.0365115 + 0.0632397i
\(549\) −3.28687e6 5.69302e6i −0.465427 0.806143i
\(550\) −4.04705e6 7.00970e6i −0.570469 0.988081i
\(551\) 5.85712e6 1.01448e7i 0.821874 1.42353i
\(552\) −420590. −0.0587505
\(553\) 3.45204e6 + 643206.i 0.480024 + 0.0894411i
\(554\) 6.86124e6 0.949791
\(555\) −297653. + 515550.i −0.0410183 + 0.0710458i
\(556\) −3.05538e6 5.29207e6i −0.419158 0.726004i
\(557\) 591120. + 1.02385e6i 0.0807304 + 0.139829i 0.903564 0.428453i \(-0.140941\pi\)
−0.822833 + 0.568283i \(0.807608\pi\)
\(558\) −1.28896e6 + 2.23254e6i −0.175248 + 0.303538i
\(559\) −535306. −0.0724556
\(560\) 8.58111e6 1.00278e7i 1.15631 1.35125i
\(561\) 1.31309e6 0.176151
\(562\) 1.12734e6 1.95261e6i 0.150561 0.260780i
\(563\) −2.03870e6 3.53114e6i −0.271071 0.469509i 0.698065 0.716034i \(-0.254045\pi\)
−0.969136 + 0.246525i \(0.920711\pi\)
\(564\) −140362. 243114.i −0.0185803 0.0321820i
\(565\) 1.58321e6 2.74219e6i 0.208649 0.361391i
\(566\) 1.25514e7 1.64684
\(567\) −398478. + 465658.i −0.0520532 + 0.0608288i
\(568\) 1.40990e6 0.183366
\(569\) −4.08807e6 + 7.08075e6i −0.529344 + 0.916851i 0.470070 + 0.882629i \(0.344229\pi\)
−0.999414 + 0.0342216i \(0.989105\pi\)
\(570\) −4.28964e6 7.42987e6i −0.553010 0.957842i
\(571\) −1.65307e6 2.86321e6i −0.212179 0.367504i 0.740217 0.672368i \(-0.234723\pi\)
−0.952396 + 0.304863i \(0.901389\pi\)
\(572\) 932292. 1.61478e6i 0.119141 0.206359i
\(573\) −2.29377e6 −0.291852
\(574\) −6.34574e6 1.18238e6i −0.803901 0.149788i
\(575\) −1.38247e6 −0.174376
\(576\) −67718.3 + 117291.i −0.00850452 + 0.0147303i
\(577\) 3.57497e6 + 6.19203e6i 0.447026 + 0.774272i 0.998191 0.0601245i \(-0.0191498\pi\)
−0.551165 + 0.834396i \(0.685816\pi\)
\(578\) 4.54324e6 + 7.86913e6i 0.565648 + 0.979731i
\(579\) −3.38970e6 + 5.87112e6i −0.420208 + 0.727821i
\(580\) 1.12876e7 1.39325
\(581\) −3.44214e6 9.74986e6i −0.423046 1.19828i
\(582\) −7.38232e6 −0.903411
\(583\) 1.67813e6 2.90661e6i 0.204482 0.354173i
\(584\) −3.43418e6 5.94818e6i −0.416669 0.721692i
\(585\) 1.64548e6 + 2.85005e6i 0.198794 + 0.344321i
\(586\) −5.81309e6 + 1.00686e7i −0.699300 + 1.21122i
\(587\) 9.69191e6 1.16095 0.580476 0.814277i \(-0.302867\pi\)
0.580476 + 0.814277i \(0.302867\pi\)
\(588\) 475755. + 3.04136e6i 0.0567467 + 0.362765i
\(589\) −3.87545e6 −0.460292
\(590\) −8.38886e6 + 1.45299e7i −0.992139 + 1.71844i
\(591\) −6466.87 11200.9i −0.000761597 0.00131912i
\(592\) 471621. + 816872.i 0.0553081 + 0.0957965i
\(593\) −3.31980e6 + 5.75006e6i −0.387682 + 0.671484i −0.992137 0.125154i \(-0.960057\pi\)
0.604456 + 0.796639i \(0.293391\pi\)
\(594\) 9.65871e6 1.12319
\(595\) 1.27500e6 + 3.61145e6i 0.147645 + 0.418205i
\(596\) −6.45569e6 −0.744435
\(597\) 1.85976e6 3.22119e6i 0.213560 0.369897i
\(598\) −439742. 761655.i −0.0502857 0.0870974i
\(599\) 1.62096e6 + 2.80758e6i 0.184588 + 0.319716i 0.943438 0.331550i \(-0.107572\pi\)
−0.758849 + 0.651266i \(0.774238\pi\)
\(600\) −1.60420e6 + 2.77855e6i −0.181919 + 0.315094i
\(601\) −5.65076e6 −0.638147 −0.319074 0.947730i \(-0.603372\pi\)
−0.319074 + 0.947730i \(0.603372\pi\)
\(602\) −1.65664e6 308676.i −0.186310 0.0347145i
\(603\) −3.78023e6 −0.423375
\(604\) 3.25887e6 5.64453e6i 0.363475 0.629557i
\(605\) −1.48539e6 2.57277e6i −0.164988 0.285767i
\(606\) 1.02480e6 + 1.77500e6i 0.113359 + 0.196343i
\(607\) −117837. + 204100.i −0.0129811 + 0.0224839i −0.872443 0.488716i \(-0.837465\pi\)
0.859462 + 0.511200i \(0.170799\pi\)
\(608\) −8.87478e6 −0.973641
\(609\) 6.61535e6 7.73063e6i 0.722786 0.844640i
\(610\) 2.62972e7 2.86144
\(611\) −223529. + 387163.i −0.0242231 + 0.0419557i
\(612\) −475080. 822863.i −0.0512729 0.0888073i
\(613\) −394438. 683187.i −0.0423963 0.0734325i 0.844049 0.536267i \(-0.180166\pi\)
−0.886445 + 0.462834i \(0.846833\pi\)
\(614\) 1.65358e6 2.86408e6i 0.177012 0.306595i
\(615\) 5.65820e6 0.603240
\(616\) −2.90645e6 + 3.39645e6i −0.308611 + 0.360640i
\(617\) 1.67739e7 1.77387 0.886935 0.461894i \(-0.152830\pi\)
0.886935 + 0.461894i \(0.152830\pi\)
\(618\) 1.04364e6 1.80763e6i 0.109921 0.190388i
\(619\) −4.11150e6 7.12132e6i −0.431294 0.747023i 0.565691 0.824617i \(-0.308610\pi\)
−0.996985 + 0.0775941i \(0.975276\pi\)
\(620\) −1.86714e6 3.23399e6i −0.195074 0.337878i
\(621\) 824854. 1.42869e6i 0.0858318 0.148665i
\(622\) −1.72675e7 −1.78959
\(623\) −5.55386e6 1.03483e6i −0.573290 0.106819i
\(624\) −3.75065e6 −0.385607
\(625\) 4.68399e6 8.11290e6i 0.479640 0.830761i
\(626\) −8.57346e6 1.48497e7i −0.874420 1.51454i
\(627\) 2.66986e6 + 4.62433e6i 0.271218 + 0.469764i
\(628\) −4.16818e6 + 7.21949e6i −0.421742 + 0.730479i
\(629\) −273714. −0.0275849
\(630\) 3.44892e6 + 9.76906e6i 0.346203 + 0.980621i
\(631\) −5.94507e6 −0.594406 −0.297203 0.954814i \(-0.596054\pi\)
−0.297203 + 0.954814i \(0.596054\pi\)
\(632\) −1.32702e6 + 2.29846e6i −0.132155 + 0.228899i
\(633\) 2.53162e6 + 4.38490e6i 0.251125 + 0.434961i
\(634\) −6.64403e6 1.15078e7i −0.656460 1.13702i
\(635\) 2.06515e6 3.57695e6i 0.203244 0.352029i
\(636\) 1.74687e6 0.171245
\(637\) 3.81569e6 3.07785e6i 0.372585 0.300537i
\(638\) −1.94011e7 −1.88701
\(639\) −1.01684e6 + 1.76122e6i −0.0985144 + 0.170632i
\(640\) 7.26120e6 + 1.25768e7i 0.700743 + 1.21372i
\(641\) 5.33804e6 + 9.24576e6i 0.513141 + 0.888786i 0.999884 + 0.0152411i \(0.00485157\pi\)
−0.486743 + 0.873545i \(0.661815\pi\)
\(642\) 3.13715e6 5.43371e6i 0.300399 0.520306i
\(643\) −3.13159e6 −0.298701 −0.149351 0.988784i \(-0.547718\pi\)
−0.149351 + 0.988784i \(0.547718\pi\)
\(644\) −333757. 945367.i −0.0317114 0.0898227i
\(645\) 1.47715e6 0.139806
\(646\) 1.97232e6 3.41616e6i 0.185950 0.322075i
\(647\) 2.46728e6 + 4.27346e6i 0.231717 + 0.401346i 0.958314 0.285719i \(-0.0922322\pi\)
−0.726596 + 0.687065i \(0.758899\pi\)
\(648\) −231615. 401168.i −0.0216685 0.0375309i
\(649\) 5.22120e6 9.04339e6i 0.486585 0.842790i
\(650\) −6.70897e6 −0.622834
\(651\) −3.30918e6 616588.i −0.306033 0.0570220i
\(652\) 9.12710e6 0.840841
\(653\) −2.86112e6 + 4.95561e6i −0.262575 + 0.454793i −0.966925 0.255059i \(-0.917905\pi\)
0.704351 + 0.709852i \(0.251238\pi\)
\(654\) 7.87794e6 + 1.36450e7i 0.720226 + 1.24747i
\(655\) −6.65258e6 1.15226e7i −0.605881 1.04942i
\(656\) 4.48261e6 7.76411e6i 0.406698 0.704421i
\(657\) 9.90710e6 0.895433
\(658\) −915018. + 1.06928e6i −0.0823881 + 0.0962779i
\(659\) 362477. 0.0325137 0.0162569 0.999868i \(-0.494825\pi\)
0.0162569 + 0.999868i \(0.494825\pi\)
\(660\) −2.57261e6 + 4.45590e6i −0.229887 + 0.398176i
\(661\) 9.56053e6 + 1.65593e7i 0.851096 + 1.47414i 0.880220 + 0.474565i \(0.157395\pi\)
−0.0291249 + 0.999576i \(0.509272\pi\)
\(662\) 3.83566e6 + 6.64356e6i 0.340170 + 0.589191i
\(663\) 544190. 942564.i 0.0480802 0.0832774i
\(664\) 7.81494e6 0.687868
\(665\) −1.01261e7 + 1.18333e7i −0.887950 + 1.03765i
\(666\) −740404. −0.0646819
\(667\) −1.65685e6 + 2.86975e6i −0.144201 + 0.249764i
\(668\) 6.14587e6 + 1.06450e7i 0.532896 + 0.923003i
\(669\) −5.91495e6 1.02450e7i −0.510958 0.885006i
\(670\) 7.56111e6 1.30962e7i 0.650727 1.12709i
\(671\) −1.63673e7 −1.40337
\(672\) −7.57804e6 1.41199e6i −0.647342 0.120617i
\(673\) −573374. −0.0487978 −0.0243989 0.999702i \(-0.507767\pi\)
−0.0243989 + 0.999702i \(0.507767\pi\)
\(674\) 9.18864e6 1.59152e7i 0.779115 1.34947i
\(675\) −6.29224e6 1.08985e7i −0.531552 0.920675i
\(676\) 2.59962e6 + 4.50267e6i 0.218798 + 0.378968i
\(677\) −5.84516e6 + 1.01241e7i −0.490146 + 0.848957i −0.999936 0.0113419i \(-0.996390\pi\)
0.509790 + 0.860299i \(0.329723\pi\)
\(678\) −2.83267e6 −0.236659
\(679\) 4.46148e6 + 1.26371e7i 0.371368 + 1.05190i
\(680\) −2.89473e6 −0.240069
\(681\) −4.58846e6 + 7.94744e6i −0.379139 + 0.656689i
\(682\) 3.20925e6 + 5.55858e6i 0.264206 + 0.457618i
\(683\) −9.18370e6 1.59066e7i −0.753297 1.30475i −0.946217 0.323534i \(-0.895129\pi\)
0.192920 0.981214i \(-0.438204\pi\)
\(684\) 1.93193e6 3.34620e6i 0.157889 0.273471i
\(685\) −2.25588e6 −0.183692
\(686\) 1.35834e7 7.32492e6i 1.10204 0.594282i
\(687\) −5.26244e6 −0.425398
\(688\) 1.17025e6 2.02693e6i 0.0942554 0.163255i
\(689\) −1.39096e6 2.40921e6i −0.111626 0.193342i
\(690\) 1.21344e6 + 2.10175e6i 0.0970280 + 0.168057i
\(691\) −1.17806e7 + 2.04045e7i −0.938579 + 1.62567i −0.170454 + 0.985366i \(0.554523\pi\)
−0.768125 + 0.640300i \(0.778810\pi\)
\(692\) −4.52612e6 −0.359303
\(693\) −2.14660e6 6.08024e6i −0.169792 0.480936i
\(694\) −1.32484e7 −1.04415
\(695\) 1.34267e7 2.32558e7i 1.05441 1.82629i
\(696\) 3.84516e6 + 6.66001e6i 0.300878 + 0.521137i
\(697\) 1.30078e6 + 2.25303e6i 0.101420 + 0.175665i
\(698\) 5.72587e6 9.91750e6i 0.444839 0.770484i
\(699\) 1.05142e7 0.813921
\(700\) −7.51839e6 1.40087e6i −0.579935 0.108057i
\(701\) 1.32980e7 1.02210 0.511048 0.859552i \(-0.329257\pi\)
0.511048 + 0.859552i \(0.329257\pi\)
\(702\) 4.00291e6 6.93325e6i 0.306573 0.530999i
\(703\) −556535. 963946.i −0.0424721 0.0735639i
\(704\) 168605. + 292033.i 0.0128215 + 0.0222075i
\(705\) 616815. 1.06836e6i 0.0467393 0.0809549i
\(706\) −4.09600e6 −0.309277
\(707\) 2.41913e6 2.82697e6i 0.182016 0.212703i
\(708\) 5.43506e6 0.407494
\(709\) 3.42677e6 5.93533e6i 0.256017 0.443434i −0.709154 0.705053i \(-0.750923\pi\)
0.965171 + 0.261619i \(0.0842564\pi\)
\(710\) −4.06770e6 7.04547e6i −0.302833 0.524522i
\(711\) −1.91412e6 3.31536e6i −0.142003 0.245956i
\(712\) 2.13499e6 3.69791e6i 0.157832 0.273374i
\(713\) 1.09628e6 0.0807602
\(714\) 2.22765e6 2.60321e6i 0.163531 0.191101i
\(715\) 8.19384e6 0.599408
\(716\) −1.26485e6 + 2.19078e6i −0.0922051 + 0.159704i
\(717\) −7.73587e6 1.33989e7i −0.561968 0.973357i
\(718\) 6.97008e6 + 1.20725e7i 0.504576 + 0.873951i
\(719\) −1.32865e7 + 2.30128e7i −0.958490 + 1.66015i −0.232318 + 0.972640i \(0.574631\pi\)
−0.726172 + 0.687513i \(0.758702\pi\)
\(720\) −1.43889e7 −1.03442
\(721\) −3.72505e6 694075.i −0.266866 0.0497242i
\(722\) −1.49658e6 −0.106846
\(723\) −5.07958e6 + 8.79810e6i −0.361395 + 0.625955i
\(724\) −2.78156e6 4.81781e6i −0.197216 0.341588i
\(725\) 1.26390e7 + 2.18913e7i 0.893031 + 1.54678i
\(726\) −1.32883e6 + 2.30160e6i −0.0935680 + 0.162065i
\(727\) 2.16991e6 0.152267 0.0761335 0.997098i \(-0.475742\pi\)
0.0761335 + 0.997098i \(0.475742\pi\)
\(728\) 1.23351e6 + 3.49393e6i 0.0862612 + 0.244335i
\(729\) 1.01628e7 0.708264
\(730\) −1.98159e7 + 3.43221e7i −1.37628 + 2.38379i
\(731\) 339587. + 588182.i 0.0235049 + 0.0407116i
\(732\) −4.25943e6 7.37755e6i −0.293815 0.508902i
\(733\) 8.73265e6 1.51254e7i 0.600324 1.03979i −0.392447 0.919774i \(-0.628372\pi\)
0.992772 0.120018i \(-0.0382951\pi\)
\(734\) 1.54016e7 1.05518
\(735\) −1.05292e7 + 8.49316e6i −0.718914 + 0.579897i
\(736\) 2.51048e6 0.170829
\(737\) −4.70602e6 + 8.15106e6i −0.319143 + 0.552771i
\(738\) 3.51865e6 + 6.09449e6i 0.237813 + 0.411904i
\(739\) 6.82304e6 + 1.18178e7i 0.459586 + 0.796026i 0.998939 0.0460536i \(-0.0146645\pi\)
−0.539353 + 0.842080i \(0.681331\pi\)
\(740\) 536264. 928836.i 0.0359997 0.0623533i
\(741\) 4.42594e6 0.296114
\(742\) −2.91544e6 8.25798e6i −0.194399 0.550635i
\(743\) 1.48965e7 0.989944 0.494972 0.868909i \(-0.335178\pi\)
0.494972 + 0.868909i \(0.335178\pi\)
\(744\) 1.27210e6 2.20334e6i 0.0842538 0.145932i
\(745\) −1.41846e7 2.45685e7i −0.936326 1.62176i
\(746\) −4.90396e6 8.49390e6i −0.322626 0.558805i
\(747\) −5.63623e6 + 9.76224e6i −0.369562 + 0.640100i
\(748\) −2.36571e6 −0.154599
\(749\) −1.11974e7 2.08637e6i −0.729311 0.135890i
\(750\) 698061. 0.0453148
\(751\) 1.26731e7 2.19505e7i 0.819944 1.42019i −0.0857783 0.996314i \(-0.527338\pi\)
0.905723 0.423871i \(-0.139329\pi\)
\(752\) −977324. 1.69277e6i −0.0630222 0.109158i
\(753\) 42911.7 + 74325.2i 0.00275796 + 0.00477693i
\(754\) −8.04049e6 + 1.39265e7i −0.515056 + 0.892102i
\(755\) 2.86419e7 1.82867
\(756\) 5.93356e6 6.93389e6i 0.377581 0.441238i
\(757\) −2.66725e7 −1.69170 −0.845852 0.533417i \(-0.820908\pi\)
−0.845852 + 0.533417i \(0.820908\pi\)
\(758\) −1.19412e7 + 2.06828e7i −0.754875 + 1.30748i
\(759\) −755245. 1.30812e6i −0.0475864 0.0824221i
\(760\) −5.88577e6 1.01945e7i −0.369632 0.640221i
\(761\) −289914. + 502146.i −0.0181471 + 0.0314318i −0.874956 0.484202i \(-0.839110\pi\)
0.856809 + 0.515634i \(0.172443\pi\)
\(762\) −3.69497e6 −0.230528
\(763\) 1.85967e7 2.17319e7i 1.15644 1.35141i
\(764\) 4.13255e6 0.256144
\(765\) 2.08772e6 3.61604e6i 0.128979 0.223398i
\(766\) −1.16179e7 2.01227e7i −0.715408 1.23912i
\(767\) −4.32770e6 7.49580e6i −0.265625 0.460076i
\(768\) 6.65046e6 1.15189e7i 0.406864 0.704708i
\(769\) 1.52438e7 0.929562 0.464781 0.885426i \(-0.346133\pi\)
0.464781 + 0.885426i \(0.346133\pi\)
\(770\) 2.53579e7 + 4.72485e6i 1.54130 + 0.287185i
\(771\) 5.31898e6 0.322250
\(772\) 6.10702e6 1.05777e7i 0.368796 0.638773i
\(773\) 9.74628e6 + 1.68810e7i 0.586665 + 1.01613i 0.994666 + 0.103152i \(0.0328927\pi\)
−0.408001 + 0.912982i \(0.633774\pi\)
\(774\) 918592. + 1.59105e6i 0.0551150 + 0.0954620i
\(775\) 4.18138e6 7.24236e6i 0.250072 0.433137i
\(776\) −1.01292e7 −0.603839