Defining parameters
Level: | \( N \) | \(=\) | \( 667 = 23 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 667.g (of order \(7\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q(\zeta_{7})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(667, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 372 | 336 | 36 |
Cusp forms | 348 | 336 | 12 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(667, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
667.2.g.a | \(6\) | \(5.326\) | \(\Q(\zeta_{14})\) | None | \(-2\) | \(1\) | \(2\) | \(-13\) | \(q+(-1+\zeta_{14}+\zeta_{14}^{3}-\zeta_{14}^{4}+\zeta_{14}^{5})q^{2}+\cdots\) |
667.2.g.b | \(144\) | \(5.326\) | None | \(1\) | \(-1\) | \(-2\) | \(19\) | ||
667.2.g.c | \(186\) | \(5.326\) | None | \(-1\) | \(0\) | \(-8\) | \(-14\) |
Decomposition of \(S_{2}^{\mathrm{old}}(667, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(667, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)