Properties

Label 6046.2.a.g
Level 6046
Weight 2
Character orbit 6046.a
Self dual Yes
Analytic conductor 48.278
Analytic rank 0
Dimension 69
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6046 = 2 \cdot 3023 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6046.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.2775530621\)
Analytic rank: \(0\)
Dimension: \(69\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(69q \) \(\mathstrut -\mathstrut 69q^{2} \) \(\mathstrut +\mathstrut 69q^{4} \) \(\mathstrut +\mathstrut 13q^{5} \) \(\mathstrut -\mathstrut 27q^{7} \) \(\mathstrut -\mathstrut 69q^{8} \) \(\mathstrut +\mathstrut 99q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(69q \) \(\mathstrut -\mathstrut 69q^{2} \) \(\mathstrut +\mathstrut 69q^{4} \) \(\mathstrut +\mathstrut 13q^{5} \) \(\mathstrut -\mathstrut 27q^{7} \) \(\mathstrut -\mathstrut 69q^{8} \) \(\mathstrut +\mathstrut 99q^{9} \) \(\mathstrut -\mathstrut 13q^{10} \) \(\mathstrut +\mathstrut 42q^{11} \) \(\mathstrut -\mathstrut 5q^{13} \) \(\mathstrut +\mathstrut 27q^{14} \) \(\mathstrut +\mathstrut 18q^{15} \) \(\mathstrut +\mathstrut 69q^{16} \) \(\mathstrut +\mathstrut 24q^{17} \) \(\mathstrut -\mathstrut 99q^{18} \) \(\mathstrut +\mathstrut q^{19} \) \(\mathstrut +\mathstrut 13q^{20} \) \(\mathstrut +\mathstrut 7q^{21} \) \(\mathstrut -\mathstrut 42q^{22} \) \(\mathstrut +\mathstrut 25q^{23} \) \(\mathstrut +\mathstrut 100q^{25} \) \(\mathstrut +\mathstrut 5q^{26} \) \(\mathstrut +\mathstrut 15q^{27} \) \(\mathstrut -\mathstrut 27q^{28} \) \(\mathstrut +\mathstrut 87q^{29} \) \(\mathstrut -\mathstrut 18q^{30} \) \(\mathstrut +\mathstrut 5q^{31} \) \(\mathstrut -\mathstrut 69q^{32} \) \(\mathstrut +\mathstrut 28q^{33} \) \(\mathstrut -\mathstrut 24q^{34} \) \(\mathstrut +\mathstrut 33q^{35} \) \(\mathstrut +\mathstrut 99q^{36} \) \(\mathstrut -\mathstrut 5q^{37} \) \(\mathstrut -\mathstrut q^{38} \) \(\mathstrut +\mathstrut 22q^{39} \) \(\mathstrut -\mathstrut 13q^{40} \) \(\mathstrut +\mathstrut 47q^{41} \) \(\mathstrut -\mathstrut 7q^{42} \) \(\mathstrut -\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 42q^{44} \) \(\mathstrut +\mathstrut 14q^{45} \) \(\mathstrut -\mathstrut 25q^{46} \) \(\mathstrut +\mathstrut 13q^{47} \) \(\mathstrut +\mathstrut 106q^{49} \) \(\mathstrut -\mathstrut 100q^{50} \) \(\mathstrut +\mathstrut 2q^{51} \) \(\mathstrut -\mathstrut 5q^{52} \) \(\mathstrut +\mathstrut 51q^{53} \) \(\mathstrut -\mathstrut 15q^{54} \) \(\mathstrut -\mathstrut 11q^{55} \) \(\mathstrut +\mathstrut 27q^{56} \) \(\mathstrut +\mathstrut 52q^{57} \) \(\mathstrut -\mathstrut 87q^{58} \) \(\mathstrut +\mathstrut 73q^{59} \) \(\mathstrut +\mathstrut 18q^{60} \) \(\mathstrut +\mathstrut 4q^{61} \) \(\mathstrut -\mathstrut 5q^{62} \) \(\mathstrut -\mathstrut 86q^{63} \) \(\mathstrut +\mathstrut 69q^{64} \) \(\mathstrut +\mathstrut 70q^{65} \) \(\mathstrut -\mathstrut 28q^{66} \) \(\mathstrut -\mathstrut 24q^{67} \) \(\mathstrut +\mathstrut 24q^{68} \) \(\mathstrut +\mathstrut 56q^{69} \) \(\mathstrut -\mathstrut 33q^{70} \) \(\mathstrut +\mathstrut 84q^{71} \) \(\mathstrut -\mathstrut 99q^{72} \) \(\mathstrut +\mathstrut 27q^{73} \) \(\mathstrut +\mathstrut 5q^{74} \) \(\mathstrut +\mathstrut 27q^{75} \) \(\mathstrut +\mathstrut q^{76} \) \(\mathstrut +\mathstrut 45q^{77} \) \(\mathstrut -\mathstrut 22q^{78} \) \(\mathstrut +\mathstrut 42q^{79} \) \(\mathstrut +\mathstrut 13q^{80} \) \(\mathstrut +\mathstrut 205q^{81} \) \(\mathstrut -\mathstrut 47q^{82} \) \(\mathstrut +\mathstrut q^{83} \) \(\mathstrut +\mathstrut 7q^{84} \) \(\mathstrut -\mathstrut 18q^{85} \) \(\mathstrut +\mathstrut 23q^{86} \) \(\mathstrut -\mathstrut q^{87} \) \(\mathstrut -\mathstrut 42q^{88} \) \(\mathstrut +\mathstrut 94q^{89} \) \(\mathstrut -\mathstrut 14q^{90} \) \(\mathstrut +\mathstrut 6q^{91} \) \(\mathstrut +\mathstrut 25q^{92} \) \(\mathstrut -\mathstrut 13q^{93} \) \(\mathstrut -\mathstrut 13q^{94} \) \(\mathstrut +\mathstrut 86q^{95} \) \(\mathstrut +\mathstrut 35q^{97} \) \(\mathstrut -\mathstrut 106q^{98} \) \(\mathstrut +\mathstrut 83q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −1.00000 −3.31246 1.00000 3.61669 3.31246 −0.0193368 −1.00000 7.97240 −3.61669
1.2 −1.00000 −3.30557 1.00000 −1.09873 3.30557 3.10435 −1.00000 7.92681 1.09873
1.3 −1.00000 −3.30292 1.00000 −2.02929 3.30292 −1.40073 −1.00000 7.90925 2.02929
1.4 −1.00000 −3.27820 1.00000 0.761195 3.27820 3.33846 −1.00000 7.74657 −0.761195
1.5 −1.00000 −3.16263 1.00000 1.22760 3.16263 −4.76545 −1.00000 7.00223 −1.22760
1.6 −1.00000 −3.15165 1.00000 1.27267 3.15165 −3.14596 −1.00000 6.93292 −1.27267
1.7 −1.00000 −3.13336 1.00000 −4.20234 3.13336 −4.60058 −1.00000 6.81797 4.20234
1.8 −1.00000 −2.76254 1.00000 2.17667 2.76254 −4.35539 −1.00000 4.63161 −2.17667
1.9 −1.00000 −2.73247 1.00000 −4.08673 2.73247 −1.35525 −1.00000 4.46639 4.08673
1.10 −1.00000 −2.42918 1.00000 1.49357 2.42918 3.38071 −1.00000 2.90091 −1.49357
1.11 −1.00000 −2.36493 1.00000 −1.05232 2.36493 −2.21269 −1.00000 2.59290 1.05232
1.12 −1.00000 −2.32306 1.00000 −1.40989 2.32306 −1.24456 −1.00000 2.39659 1.40989
1.13 −1.00000 −2.30469 1.00000 4.02559 2.30469 −3.39321 −1.00000 2.31160 −4.02559
1.14 −1.00000 −2.29528 1.00000 2.67586 2.29528 −0.797143 −1.00000 2.26829 −2.67586
1.15 −1.00000 −2.17249 1.00000 −2.48902 2.17249 3.29516 −1.00000 1.71973 2.48902
1.16 −1.00000 −2.10025 1.00000 4.19656 2.10025 2.72635 −1.00000 1.41104 −4.19656
1.17 −1.00000 −1.93704 1.00000 −1.86801 1.93704 4.01320 −1.00000 0.752114 1.86801
1.18 −1.00000 −1.82817 1.00000 −4.13260 1.82817 2.43979 −1.00000 0.342212 4.13260
1.19 −1.00000 −1.76075 1.00000 0.351086 1.76075 −1.33291 −1.00000 0.100238 −0.351086
1.20 −1.00000 −1.66158 1.00000 −1.21846 1.66158 −1.75845 −1.00000 −0.239146 1.21846
See all 69 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.69
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3023\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6046))\):

\(T_{3}^{69} - \cdots\)
\(T_{11}^{69} - \cdots\)