Properties

Label 6045.2.a.j
Level 6045
Weight 2
Character orbit 6045.a
Self dual yes
Analytic conductor 48.270
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 6045 = 3 \cdot 5 \cdot 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6045.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(48.2695680219\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} - q^{4} - q^{5} + q^{6} - 3q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} - q^{4} - q^{5} + q^{6} - 3q^{8} + q^{9} - q^{10} + 4q^{11} - q^{12} + q^{13} - q^{15} - q^{16} + 2q^{17} + q^{18} - 4q^{19} + q^{20} + 4q^{22} - 3q^{24} + q^{25} + q^{26} + q^{27} - 6q^{29} - q^{30} + q^{31} + 5q^{32} + 4q^{33} + 2q^{34} - q^{36} + 6q^{37} - 4q^{38} + q^{39} + 3q^{40} + 6q^{41} - 4q^{43} - 4q^{44} - q^{45} - q^{48} - 7q^{49} + q^{50} + 2q^{51} - q^{52} + 6q^{53} + q^{54} - 4q^{55} - 4q^{57} - 6q^{58} - 8q^{59} + q^{60} + 6q^{61} + q^{62} + 7q^{64} - q^{65} + 4q^{66} + 12q^{67} - 2q^{68} - 4q^{71} - 3q^{72} + 10q^{73} + 6q^{74} + q^{75} + 4q^{76} + q^{78} + 4q^{79} + q^{80} + q^{81} + 6q^{82} - 2q^{85} - 4q^{86} - 6q^{87} - 12q^{88} + 6q^{89} - q^{90} + q^{93} + 4q^{95} + 5q^{96} - 2q^{97} - 7q^{98} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 −1.00000 −1.00000 1.00000 0 −3.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(13\) \(-1\)
\(31\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6045.2.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6045.2.a.j 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6045))\):

\( T_{2} - 1 \)
\( T_{7} \)
\( T_{11} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + 2 T^{2} \)
$3$ \( 1 - T \)
$5$ \( 1 + T \)
$7$ \( 1 + 7 T^{2} \)
$11$ \( 1 - 4 T + 11 T^{2} \)
$13$ \( 1 - T \)
$17$ \( 1 - 2 T + 17 T^{2} \)
$19$ \( 1 + 4 T + 19 T^{2} \)
$23$ \( 1 + 23 T^{2} \)
$29$ \( 1 + 6 T + 29 T^{2} \)
$31$ \( 1 - T \)
$37$ \( 1 - 6 T + 37 T^{2} \)
$41$ \( 1 - 6 T + 41 T^{2} \)
$43$ \( 1 + 4 T + 43 T^{2} \)
$47$ \( 1 + 47 T^{2} \)
$53$ \( 1 - 6 T + 53 T^{2} \)
$59$ \( 1 + 8 T + 59 T^{2} \)
$61$ \( 1 - 6 T + 61 T^{2} \)
$67$ \( 1 - 12 T + 67 T^{2} \)
$71$ \( 1 + 4 T + 71 T^{2} \)
$73$ \( 1 - 10 T + 73 T^{2} \)
$79$ \( 1 - 4 T + 79 T^{2} \)
$83$ \( 1 + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 + 2 T + 97 T^{2} \)
show more
show less