Properties

Label 6039.2.a.j
Level $6039$
Weight $2$
Character orbit 6039.a
Self dual yes
Analytic conductor $48.222$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 6039 = 3^{2} \cdot 11 \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6039.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(48.2216577807\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Defining polynomial: \(x^{14} - x^{13} - 21 x^{12} + 20 x^{11} + 167 x^{10} - 148 x^{9} - 627 x^{8} + 497 x^{7} + 1123 x^{6} - 745 x^{5} - 802 x^{4} + 386 x^{3} + 74 x^{2} - 15 x - 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2013)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( 1 + \beta_{2} ) q^{4} -\beta_{10} q^{5} + ( 1 - \beta_{4} ) q^{7} + ( \beta_{1} + \beta_{3} ) q^{8} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( 1 + \beta_{2} ) q^{4} -\beta_{10} q^{5} + ( 1 - \beta_{4} ) q^{7} + ( \beta_{1} + \beta_{3} ) q^{8} + ( -\beta_{3} - \beta_{4} - \beta_{6} + \beta_{7} - \beta_{9} - \beta_{10} - \beta_{11} + \beta_{12} - \beta_{13} ) q^{10} + q^{11} + ( 1 - \beta_{2} - \beta_{4} - \beta_{6} + \beta_{8} - \beta_{10} - \beta_{13} ) q^{13} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{5} + \beta_{9} - \beta_{10} ) q^{14} + ( 1 + \beta_{2} - \beta_{5} + \beta_{10} + \beta_{11} ) q^{16} + ( 1 + \beta_{1} - \beta_{2} - \beta_{6} - \beta_{9} - \beta_{11} ) q^{17} + ( 1 - \beta_{4} - \beta_{6} + \beta_{7} - \beta_{10} - \beta_{11} + \beta_{12} - \beta_{13} ) q^{19} + ( -1 + \beta_{1} - 2 \beta_{2} - \beta_{4} - 2 \beta_{6} + \beta_{7} + \beta_{8} - 2 \beta_{10} - 2 \beta_{13} ) q^{20} + \beta_{1} q^{22} + ( -1 + \beta_{2} + \beta_{6} - \beta_{8} + \beta_{12} + \beta_{13} ) q^{23} + ( 1 + \beta_{1} - \beta_{6} - \beta_{8} - \beta_{9} - 2 \beta_{11} + \beta_{12} ) q^{25} + ( -1 + \beta_{1} - \beta_{3} - \beta_{4} - 2 \beta_{6} + \beta_{7} - 2 \beta_{9} - \beta_{10} - \beta_{11} + 2 \beta_{12} - 2 \beta_{13} ) q^{26} + ( 1 + \beta_{1} + 3 \beta_{2} + \beta_{3} - \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} ) q^{28} + ( -1 + \beta_{4} + 3 \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} + \beta_{10} + \beta_{13} ) q^{29} + ( 2 + \beta_{5} - \beta_{7} + \beta_{8} + \beta_{10} + \beta_{13} ) q^{31} + ( \beta_{3} - \beta_{5} + \beta_{6} + \beta_{8} + \beta_{9} + \beta_{11} - \beta_{12} ) q^{32} + ( 2 - \beta_{1} - \beta_{3} - \beta_{7} + \beta_{11} - 2 \beta_{12} ) q^{34} + ( 2 \beta_{1} - \beta_{2} - \beta_{3} + \beta_{5} - 2 \beta_{6} - 2 \beta_{9} ) q^{35} + ( 1 - \beta_{1} + \beta_{3} + 2 \beta_{6} - \beta_{7} + 2 \beta_{9} + \beta_{13} ) q^{37} + ( -1 + 2 \beta_{1} - \beta_{4} - \beta_{6} + \beta_{7} - 2 \beta_{10} + \beta_{12} - \beta_{13} ) q^{38} + ( -2 \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} - 2 \beta_{9} + \beta_{10} - \beta_{11} + 3 \beta_{12} - \beta_{13} ) q^{40} + ( 3 - \beta_{3} + \beta_{4} - \beta_{7} + 2 \beta_{8} + 2 \beta_{10} + \beta_{11} + \beta_{13} ) q^{41} + ( 2 + \beta_{2} + \beta_{3} + \beta_{5} - 2 \beta_{8} - \beta_{12} + \beta_{13} ) q^{43} + ( 1 + \beta_{2} ) q^{44} + ( 2 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} + \beta_{8} + 2 \beta_{9} - 2 \beta_{10} + \beta_{11} - \beta_{12} ) q^{46} + ( -4 - \beta_{1} - 2 \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{8} - 2 \beta_{10} - 3 \beta_{11} + \beta_{12} ) q^{47} + ( 3 + \beta_{3} + \beta_{4} - \beta_{5} + 2 \beta_{6} - \beta_{7} + 2 \beta_{8} + \beta_{9} + 2 \beta_{10} + 2 \beta_{11} - 2 \beta_{12} + \beta_{13} ) q^{49} + ( 3 + \beta_{1} - \beta_{2} - \beta_{4} - \beta_{7} + \beta_{8} + \beta_{9} - \beta_{10} + 2 \beta_{11} - 4 \beta_{12} ) q^{50} + ( 2 \beta_{1} - \beta_{2} - 3 \beta_{6} + 2 \beta_{7} + 2 \beta_{8} - 2 \beta_{9} - 3 \beta_{10} + \beta_{11} - 3 \beta_{13} ) q^{52} + ( -\beta_{1} - \beta_{2} - \beta_{4} - \beta_{5} + 2 \beta_{9} - 2 \beta_{10} - \beta_{12} - \beta_{13} ) q^{53} -\beta_{10} q^{55} + ( 3 + 3 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - \beta_{5} + 2 \beta_{6} + \beta_{9} + \beta_{10} + 2 \beta_{11} - 2 \beta_{12} + \beta_{13} ) q^{56} + ( 4 - 2 \beta_{1} + \beta_{2} - \beta_{5} + 2 \beta_{6} - \beta_{7} + 3 \beta_{9} + 2 \beta_{11} - 4 \beta_{12} + 2 \beta_{13} ) q^{58} + ( -\beta_{3} - \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + \beta_{7} + \beta_{8} - \beta_{9} - \beta_{11} + \beta_{12} ) q^{59} + q^{61} + ( 1 + 2 \beta_{1} + \beta_{2} + \beta_{4} + \beta_{5} - \beta_{7} - \beta_{8} + 2 \beta_{10} + \beta_{11} + \beta_{13} ) q^{62} + ( -2 - \beta_{1} + 2 \beta_{2} + \beta_{3} + 2 \beta_{6} - 2 \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} + \beta_{13} ) q^{64} + ( 4 + 2 \beta_{1} + 2 \beta_{2} + \beta_{4} - 2 \beta_{6} - 2 \beta_{9} - 2 \beta_{11} + \beta_{12} ) q^{65} + ( -2 \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} + \beta_{6} + \beta_{7} - 2 \beta_{8} + \beta_{10} + \beta_{12} + 2 \beta_{13} ) q^{67} + ( -6 + \beta_{1} - 2 \beta_{2} + \beta_{4} + \beta_{5} + 2 \beta_{6} - \beta_{7} + \beta_{10} - 2 \beta_{11} + \beta_{12} ) q^{68} + ( 4 - \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + \beta_{4} + 2 \beta_{5} - 3 \beta_{6} + 2 \beta_{8} - 3 \beta_{9} - 2 \beta_{11} + 2 \beta_{12} - 2 \beta_{13} ) q^{70} + ( 2 + 2 \beta_{2} - \beta_{5} + \beta_{6} + 2 \beta_{9} - \beta_{10} + \beta_{11} - 3 \beta_{12} + 2 \beta_{13} ) q^{71} + ( 2 - \beta_{1} - 2 \beta_{2} + \beta_{5} + 2 \beta_{6} - 2 \beta_{7} - \beta_{8} + \beta_{9} + \beta_{10} - \beta_{12} + \beta_{13} ) q^{73} + ( 3 \beta_{2} - \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{8} + 2 \beta_{9} + \beta_{10} + \beta_{11} - \beta_{12} + 2 \beta_{13} ) q^{74} + ( 3 + 2 \beta_{2} - \beta_{3} - \beta_{6} + \beta_{7} + \beta_{8} - 2 \beta_{9} - \beta_{10} + 2 \beta_{12} - \beta_{13} ) q^{76} + ( 1 - \beta_{4} ) q^{77} + ( 2 - 3 \beta_{1} + \beta_{5} + \beta_{6} - \beta_{7} + 2 \beta_{9} + \beta_{10} + \beta_{11} + \beta_{12} ) q^{79} + ( -2 + \beta_{1} - 3 \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{7} + 3 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + 4 \beta_{11} - 2 \beta_{12} ) q^{80} + ( 1 + 2 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{5} + \beta_{6} - \beta_{7} - \beta_{8} + 2 \beta_{10} + 2 \beta_{11} - \beta_{12} + \beta_{13} ) q^{82} + ( -3 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{6} + \beta_{7} - \beta_{8} - 2 \beta_{10} + \beta_{11} ) q^{83} + ( 2 - \beta_{1} - \beta_{3} - \beta_{4} - \beta_{5} + 2 \beta_{6} - 2 \beta_{7} + \beta_{8} + \beta_{9} - 2 \beta_{10} + \beta_{11} - 2 \beta_{12} + \beta_{13} ) q^{85} + ( -1 + 3 \beta_{1} + \beta_{2} + 2 \beta_{4} + \beta_{6} - \beta_{7} + 3 \beta_{10} - 3 \beta_{11} + 2 \beta_{12} + 2 \beta_{13} ) q^{86} + ( \beta_{1} + \beta_{3} ) q^{88} + ( 1 + 2 \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} + \beta_{6} - 2 \beta_{7} - \beta_{9} + \beta_{10} + \beta_{11} - 2 \beta_{13} ) q^{89} + ( 5 + 2 \beta_{1} - 4 \beta_{2} - 2 \beta_{3} + \beta_{5} + 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + 3 \beta_{11} - \beta_{12} - 2 \beta_{13} ) q^{91} + ( -3 + 2 \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + 2 \beta_{7} - 2 \beta_{8} - 3 \beta_{11} + 3 \beta_{12} - \beta_{13} ) q^{92} + ( -2 - 4 \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{5} - \beta_{8} + 4 \beta_{9} - 5 \beta_{10} - 2 \beta_{12} + \beta_{13} ) q^{94} + ( -1 + 2 \beta_{1} + \beta_{2} + \beta_{4} + \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} - \beta_{10} + \beta_{11} - \beta_{12} ) q^{95} + ( 2 + 4 \beta_{1} + \beta_{2} - \beta_{4} - 4 \beta_{6} + 2 \beta_{7} - \beta_{8} - 4 \beta_{9} - \beta_{10} - 3 \beta_{11} + 2 \beta_{12} - \beta_{13} ) q^{97} + ( 1 + \beta_{1} + 5 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 4 \beta_{6} - 2 \beta_{7} - 3 \beta_{8} + 2 \beta_{9} + 4 \beta_{10} + 3 \beta_{11} - 2 \beta_{12} + 3 \beta_{13} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14q + q^{2} + 15q^{4} - q^{5} + 9q^{7} + O(q^{10}) \) \( 14q + q^{2} + 15q^{4} - q^{5} + 9q^{7} + 6q^{10} + 14q^{11} + q^{13} + 7q^{14} + 17q^{16} + 9q^{17} + 22q^{19} - 23q^{20} + q^{22} - q^{23} + 25q^{25} - 4q^{26} + 37q^{28} + 6q^{29} + 9q^{31} - 4q^{32} + 8q^{34} - 18q^{35} + 18q^{37} - 8q^{38} + 16q^{40} + 25q^{41} + 25q^{43} + 15q^{44} + 20q^{46} - 36q^{47} + 25q^{49} - 2q^{50} - 13q^{52} - q^{55} + 40q^{56} + 33q^{58} - 17q^{59} + 14q^{61} + 13q^{62} - 6q^{64} + 61q^{65} + 22q^{67} - 66q^{68} + 44q^{70} + 13q^{71} + 20q^{73} + 12q^{74} + 49q^{76} + 9q^{77} + 31q^{79} - 88q^{80} + 2q^{82} - 32q^{83} + 2q^{85} + 14q^{86} + 21q^{89} + 45q^{91} + 14q^{92} - 31q^{94} - 23q^{95} + 37q^{97} + 38q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{14} - x^{13} - 21 x^{12} + 20 x^{11} + 167 x^{10} - 148 x^{9} - 627 x^{8} + 497 x^{7} + 1123 x^{6} - 745 x^{5} - 802 x^{4} + 386 x^{3} + 74 x^{2} - 15 x - 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 5 \nu \)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{13} - 71 \nu^{12} - 586 \nu^{11} + 2838 \nu^{10} + 10454 \nu^{9} - 35539 \nu^{8} - 62411 \nu^{7} + 186606 \nu^{6} + 140254 \nu^{5} - 411132 \nu^{4} - 83942 \nu^{3} + 307840 \nu^{2} - 27224 \nu - 13953 \)\()/4505\)
\(\beta_{5}\)\(=\)\((\)\( -82 \nu^{13} - 1317 \nu^{12} + 1503 \nu^{11} + 25486 \nu^{10} - 7732 \nu^{9} - 179663 \nu^{8} - 4527 \nu^{7} + 556827 \nu^{6} + 125703 \nu^{5} - 713699 \nu^{4} - 233864 \nu^{3} + 253645 \nu^{2} + 24637 \nu - 22401 \)\()/4505\)
\(\beta_{6}\)\(=\)\((\)\( -311 \nu^{13} + 444 \nu^{12} + 6964 \nu^{11} - 9372 \nu^{10} - 59981 \nu^{9} + 74721 \nu^{8} + 245494 \nu^{7} - 273749 \nu^{6} - 466936 \nu^{5} + 435843 \nu^{4} + 306853 \nu^{3} - 209250 \nu^{2} + 43281 \nu - 1068 \)\()/4505\)
\(\beta_{7}\)\(=\)\((\)\(-349 \nu^{13} - 2254 \nu^{12} + 7221 \nu^{11} + 44412 \nu^{10} - 54664 \nu^{9} - 320701 \nu^{8} + 180436 \nu^{7} + 1032859 \nu^{6} - 232439 \nu^{5} - 1428903 \nu^{4} + 76842 \nu^{3} + 618105 \nu^{2} - 67706 \nu - 17712\)\()/4505\)
\(\beta_{8}\)\(=\)\((\)\( -251 \nu^{13} + 199 \nu^{12} + 5183 \nu^{11} - 3957 \nu^{10} - 40303 \nu^{9} + 29344 \nu^{8} + 146488 \nu^{7} - 100390 \nu^{6} - 248794 \nu^{5} + 158677 \nu^{4} + 158118 \nu^{3} - 92020 \nu^{2} - 2743 \nu + 885 \)\()/901\)
\(\beta_{9}\)\(=\)\((\)\(1423 \nu^{13} - 2582 \nu^{12} - 31082 \nu^{11} + 52066 \nu^{10} + 260758 \nu^{9} - 388563 \nu^{8} - 1050382 \nu^{7} + 1308832 \nu^{6} + 2048843 \nu^{5} - 1915614 \nu^{4} - 1595379 \nu^{3} + 883850 \nu^{2} + 113882 \nu - 20941\)\()/4505\)
\(\beta_{10}\)\(=\)\((\)\(1433 \nu^{13} - 1872 \nu^{12} - 29727 \nu^{11} + 37201 \nu^{10} + 232803 \nu^{9} - 271938 \nu^{8} - 858752 \nu^{7} + 893382 \nu^{6} + 1511263 \nu^{5} - 1286659 \nu^{4} - 1048784 \nu^{3} + 607560 \nu^{2} + 52752 \nu - 12056\)\()/4505\)
\(\beta_{11}\)\(=\)\((\)\( -303 \nu^{13} + 111 \nu^{12} + 6246 \nu^{11} - 2343 \nu^{10} - 48107 \nu^{9} + 18455 \nu^{8} + 170845 \nu^{7} - 67311 \nu^{6} - 277112 \nu^{5} + 115493 \nu^{4} + 162984 \nu^{3} - 77090 \nu^{2} - 5623 \nu + 3337 \)\()/901\)
\(\beta_{12}\)\(=\)\((\)\(-1576 \nu^{13} + 729 \nu^{12} + 31524 \nu^{11} - 14292 \nu^{10} - 233541 \nu^{9} + 104816 \nu^{8} + 786304 \nu^{7} - 360249 \nu^{6} - 1177831 \nu^{5} + 604778 \nu^{4} + 591393 \nu^{3} - 424595 \nu^{2} + 14111 \nu + 21502\)\()/4505\)
\(\beta_{13}\)\(=\)\((\)\(-3393 \nu^{13} + 2367 \nu^{12} + 70487 \nu^{11} - 47406 \nu^{10} - 551558 \nu^{9} + 352898 \nu^{8} + 2019747 \nu^{7} - 1203902 \nu^{6} - 3477208 \nu^{5} + 1876454 \nu^{4} + 2324484 \nu^{3} - 1064330 \nu^{2} - 176207 \nu + 36556\)\()/4505\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 5 \beta_{1}\)
\(\nu^{4}\)\(=\)\(\beta_{11} + \beta_{10} - \beta_{5} + 7 \beta_{2} + 15\)
\(\nu^{5}\)\(=\)\(-\beta_{12} + \beta_{11} + \beta_{9} + \beta_{8} + \beta_{6} - \beta_{5} + 9 \beta_{3} + 28 \beta_{1}\)
\(\nu^{6}\)\(=\)\(\beta_{13} + 9 \beta_{11} + 9 \beta_{10} + \beta_{9} - 2 \beta_{8} + 2 \beta_{6} - 10 \beta_{5} + \beta_{3} + 48 \beta_{2} - \beta_{1} + 84\)
\(\nu^{7}\)\(=\)\(2 \beta_{13} - 12 \beta_{12} + 10 \beta_{11} - \beta_{10} + 13 \beta_{9} + 9 \beta_{8} + 12 \beta_{6} - 12 \beta_{5} - \beta_{4} + 67 \beta_{3} + 2 \beta_{2} + 168 \beta_{1} - 1\)
\(\nu^{8}\)\(=\)\(16 \beta_{13} - 2 \beta_{12} + 64 \beta_{11} + 66 \beta_{10} + 16 \beta_{9} - 26 \beta_{8} - \beta_{7} + 28 \beta_{6} - 79 \beta_{5} - \beta_{4} + 14 \beta_{3} + 326 \beta_{2} - 13 \beta_{1} + 504\)
\(\nu^{9}\)\(=\)\(35 \beta_{13} - 109 \beta_{12} + 79 \beta_{11} - 10 \beta_{10} + 125 \beta_{9} + 57 \beta_{8} - 4 \beta_{7} + 114 \beta_{6} - 106 \beta_{5} - 12 \beta_{4} + 472 \beta_{3} + 33 \beta_{2} + 1046 \beta_{1} - 12\)
\(\nu^{10}\)\(=\)\(176 \beta_{13} - 37 \beta_{12} + 426 \beta_{11} + 464 \beta_{10} + 174 \beta_{9} - 243 \beta_{8} - 20 \beta_{7} + 282 \beta_{6} - 579 \beta_{5} - 11 \beta_{4} + 141 \beta_{3} + 2204 \beta_{2} - 118 \beta_{1} + 3147\)
\(\nu^{11}\)\(=\)\(405 \beta_{13} - 898 \beta_{12} + 586 \beta_{11} - 56 \beta_{10} + 1066 \beta_{9} + 302 \beta_{8} - 75 \beta_{7} + 984 \beta_{6} - 839 \beta_{5} - 98 \beta_{4} + 3258 \beta_{3} + 370 \beta_{2} + 6644 \beta_{1} - 89\)
\(\nu^{12}\)\(=\)\(1652 \beta_{13} - 443 \beta_{12} + 2777 \beta_{11} + 3245 \beta_{10} + 1609 \beta_{9} - 2010 \beta_{8} - 256 \beta_{7} + 2491 \beta_{6} - 4113 \beta_{5} - 72 \beta_{4} + 1251 \beta_{3} + 14874 \beta_{2} - 923 \beta_{1} + 20093\)
\(\nu^{13}\)\(=\)\(3916 \beta_{13} - 7055 \beta_{12} + 4261 \beta_{11} - 128 \beta_{10} + 8540 \beta_{9} + 1339 \beta_{8} - 911 \beta_{7} + 8029 \beta_{6} - 6318 \beta_{5} - 681 \beta_{4} + 22304 \beta_{3} + 3528 \beta_{2} + 42680 \beta_{1} - 465\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.57087
−2.54331
−1.76637
−1.69494
−1.18140
−0.231279
−0.0561655
0.179763
0.546298
1.61392
1.67203
1.93923
2.45909
2.63401
−2.57087 0 4.60938 −4.00721 0 2.04273 −6.70837 0 10.3020
1.2 −2.54331 0 4.46845 −0.329781 0 0.595463 −6.27804 0 0.838736
1.3 −1.76637 0 1.12006 2.50284 0 −4.08919 1.55430 0 −4.42094
1.4 −1.69494 0 0.872835 −1.13650 0 4.14659 1.91048 0 1.92630
1.5 −1.18140 0 −0.604292 2.90081 0 −0.528840 3.07671 0 −3.42702
1.6 −0.231279 0 −1.94651 −3.70694 0 −0.911108 0.912746 0 0.857338
1.7 −0.0561655 0 −1.99685 2.87016 0 3.53988 0.224485 0 −0.161204
1.8 0.179763 0 −1.96769 −2.20477 0 3.17177 −0.713244 0 −0.396336
1.9 0.546298 0 −1.70156 0.842631 0 −4.19208 −2.02216 0 0.460328
1.10 1.61392 0 0.604750 3.65776 0 0.985739 −2.25183 0 5.90335
1.11 1.67203 0 0.795679 1.45953 0 −0.113904 −2.01366 0 2.44037
1.12 1.93923 0 1.76061 −3.07794 0 −3.15900 −0.464237 0 −5.96883
1.13 2.45909 0 4.04715 1.85442 0 2.32343 5.03413 0 4.56020
1.14 2.63401 0 4.93799 −2.62502 0 5.18852 7.73867 0 −6.91432
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.14
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(11\) \(-1\)
\(61\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6039.2.a.j 14
3.b odd 2 1 2013.2.a.h 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2013.2.a.h 14 3.b odd 2 1
6039.2.a.j 14 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{14} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6039))\).