Properties

Label 6039.2.a.g.1.7
Level $6039$
Weight $2$
Character 6039.1
Self dual yes
Analytic conductor $48.222$
Analytic rank $1$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6039,2,Mod(1,6039)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6039, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6039.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6039 = 3^{2} \cdot 11 \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6039.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.2216577807\)
Analytic rank: \(1\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 4 x^{12} - 11 x^{11} + 55 x^{10} + 32 x^{9} - 266 x^{8} + 13 x^{7} + 534 x^{6} - 141 x^{5} + \cdots - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2013)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.468970\) of defining polynomial
Character \(\chi\) \(=\) 6039.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.468970 q^{2} -1.78007 q^{4} +3.25579 q^{5} -3.43403 q^{7} +1.77274 q^{8} +O(q^{10})\) \(q-0.468970 q^{2} -1.78007 q^{4} +3.25579 q^{5} -3.43403 q^{7} +1.77274 q^{8} -1.52687 q^{10} +1.00000 q^{11} -6.24548 q^{13} +1.61046 q^{14} +2.72877 q^{16} -4.43634 q^{17} +2.00167 q^{19} -5.79552 q^{20} -0.468970 q^{22} +5.24027 q^{23} +5.60015 q^{25} +2.92895 q^{26} +6.11281 q^{28} -2.01247 q^{29} +2.78091 q^{31} -4.82519 q^{32} +2.08051 q^{34} -11.1805 q^{35} +9.46308 q^{37} -0.938726 q^{38} +5.77166 q^{40} +6.90514 q^{41} +7.06425 q^{43} -1.78007 q^{44} -2.45753 q^{46} +3.28507 q^{47} +4.79257 q^{49} -2.62630 q^{50} +11.1174 q^{52} +3.39708 q^{53} +3.25579 q^{55} -6.08764 q^{56} +0.943788 q^{58} -6.95400 q^{59} -1.00000 q^{61} -1.30417 q^{62} -3.19467 q^{64} -20.3340 q^{65} -13.7103 q^{67} +7.89698 q^{68} +5.24331 q^{70} -11.0077 q^{71} -1.02864 q^{73} -4.43790 q^{74} -3.56312 q^{76} -3.43403 q^{77} -10.9648 q^{79} +8.88430 q^{80} -3.23831 q^{82} -10.7032 q^{83} -14.4438 q^{85} -3.31292 q^{86} +1.77274 q^{88} -5.93188 q^{89} +21.4472 q^{91} -9.32803 q^{92} -1.54060 q^{94} +6.51703 q^{95} +1.30698 q^{97} -2.24757 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 4 q^{2} + 12 q^{4} - 7 q^{5} + 5 q^{7} - 15 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 13 q - 4 q^{2} + 12 q^{4} - 7 q^{5} + 5 q^{7} - 15 q^{8} + 8 q^{10} + 13 q^{11} - 9 q^{13} - 19 q^{14} + 18 q^{16} - 7 q^{17} + 2 q^{19} - 15 q^{20} - 4 q^{22} - 23 q^{23} + 10 q^{25} - 8 q^{26} + 9 q^{28} - 16 q^{29} + 9 q^{31} - 29 q^{32} + 2 q^{34} - 16 q^{35} + 14 q^{37} - 8 q^{38} + 16 q^{40} - 19 q^{41} + 7 q^{43} + 12 q^{44} + 4 q^{46} - 26 q^{47} + 8 q^{49} + 15 q^{50} - 17 q^{52} - 18 q^{53} - 7 q^{55} - 44 q^{56} - q^{58} - 31 q^{59} - 13 q^{61} + 5 q^{62} - 17 q^{64} - 31 q^{65} + 14 q^{67} + 32 q^{68} - 20 q^{70} - 37 q^{71} - 16 q^{73} + 6 q^{74} - 7 q^{76} + 5 q^{77} - 17 q^{79} + 2 q^{80} - 2 q^{82} - 30 q^{83} - 16 q^{85} + 22 q^{86} - 15 q^{88} - 35 q^{89} - q^{91} - 24 q^{92} - 11 q^{94} - 13 q^{95} - q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.468970 −0.331612 −0.165806 0.986158i \(-0.553023\pi\)
−0.165806 + 0.986158i \(0.553023\pi\)
\(3\) 0 0
\(4\) −1.78007 −0.890033
\(5\) 3.25579 1.45603 0.728016 0.685560i \(-0.240443\pi\)
0.728016 + 0.685560i \(0.240443\pi\)
\(6\) 0 0
\(7\) −3.43403 −1.29794 −0.648971 0.760813i \(-0.724800\pi\)
−0.648971 + 0.760813i \(0.724800\pi\)
\(8\) 1.77274 0.626758
\(9\) 0 0
\(10\) −1.52687 −0.482838
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −6.24548 −1.73219 −0.866093 0.499883i \(-0.833376\pi\)
−0.866093 + 0.499883i \(0.833376\pi\)
\(14\) 1.61046 0.430413
\(15\) 0 0
\(16\) 2.72877 0.682193
\(17\) −4.43634 −1.07597 −0.537985 0.842954i \(-0.680814\pi\)
−0.537985 + 0.842954i \(0.680814\pi\)
\(18\) 0 0
\(19\) 2.00167 0.459216 0.229608 0.973283i \(-0.426256\pi\)
0.229608 + 0.973283i \(0.426256\pi\)
\(20\) −5.79552 −1.29592
\(21\) 0 0
\(22\) −0.468970 −0.0999848
\(23\) 5.24027 1.09267 0.546336 0.837566i \(-0.316022\pi\)
0.546336 + 0.837566i \(0.316022\pi\)
\(24\) 0 0
\(25\) 5.60015 1.12003
\(26\) 2.92895 0.574413
\(27\) 0 0
\(28\) 6.11281 1.15521
\(29\) −2.01247 −0.373706 −0.186853 0.982388i \(-0.559829\pi\)
−0.186853 + 0.982388i \(0.559829\pi\)
\(30\) 0 0
\(31\) 2.78091 0.499467 0.249733 0.968315i \(-0.419657\pi\)
0.249733 + 0.968315i \(0.419657\pi\)
\(32\) −4.82519 −0.852981
\(33\) 0 0
\(34\) 2.08051 0.356805
\(35\) −11.1805 −1.88985
\(36\) 0 0
\(37\) 9.46308 1.55572 0.777860 0.628438i \(-0.216305\pi\)
0.777860 + 0.628438i \(0.216305\pi\)
\(38\) −0.938726 −0.152281
\(39\) 0 0
\(40\) 5.77166 0.912580
\(41\) 6.90514 1.07840 0.539201 0.842177i \(-0.318726\pi\)
0.539201 + 0.842177i \(0.318726\pi\)
\(42\) 0 0
\(43\) 7.06425 1.07729 0.538644 0.842533i \(-0.318937\pi\)
0.538644 + 0.842533i \(0.318937\pi\)
\(44\) −1.78007 −0.268355
\(45\) 0 0
\(46\) −2.45753 −0.362343
\(47\) 3.28507 0.479177 0.239588 0.970875i \(-0.422987\pi\)
0.239588 + 0.970875i \(0.422987\pi\)
\(48\) 0 0
\(49\) 4.79257 0.684653
\(50\) −2.62630 −0.371416
\(51\) 0 0
\(52\) 11.1174 1.54170
\(53\) 3.39708 0.466625 0.233312 0.972402i \(-0.425043\pi\)
0.233312 + 0.972402i \(0.425043\pi\)
\(54\) 0 0
\(55\) 3.25579 0.439010
\(56\) −6.08764 −0.813495
\(57\) 0 0
\(58\) 0.943788 0.123925
\(59\) −6.95400 −0.905333 −0.452667 0.891680i \(-0.649527\pi\)
−0.452667 + 0.891680i \(0.649527\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037
\(62\) −1.30417 −0.165629
\(63\) 0 0
\(64\) −3.19467 −0.399334
\(65\) −20.3340 −2.52212
\(66\) 0 0
\(67\) −13.7103 −1.67498 −0.837491 0.546452i \(-0.815978\pi\)
−0.837491 + 0.546452i \(0.815978\pi\)
\(68\) 7.89698 0.957650
\(69\) 0 0
\(70\) 5.24331 0.626695
\(71\) −11.0077 −1.30637 −0.653186 0.757197i \(-0.726568\pi\)
−0.653186 + 0.757197i \(0.726568\pi\)
\(72\) 0 0
\(73\) −1.02864 −0.120393 −0.0601965 0.998187i \(-0.519173\pi\)
−0.0601965 + 0.998187i \(0.519173\pi\)
\(74\) −4.43790 −0.515895
\(75\) 0 0
\(76\) −3.56312 −0.408717
\(77\) −3.43403 −0.391344
\(78\) 0 0
\(79\) −10.9648 −1.23364 −0.616818 0.787105i \(-0.711579\pi\)
−0.616818 + 0.787105i \(0.711579\pi\)
\(80\) 8.88430 0.993295
\(81\) 0 0
\(82\) −3.23831 −0.357611
\(83\) −10.7032 −1.17483 −0.587415 0.809286i \(-0.699854\pi\)
−0.587415 + 0.809286i \(0.699854\pi\)
\(84\) 0 0
\(85\) −14.4438 −1.56665
\(86\) −3.31292 −0.357242
\(87\) 0 0
\(88\) 1.77274 0.188975
\(89\) −5.93188 −0.628778 −0.314389 0.949294i \(-0.601800\pi\)
−0.314389 + 0.949294i \(0.601800\pi\)
\(90\) 0 0
\(91\) 21.4472 2.24828
\(92\) −9.32803 −0.972515
\(93\) 0 0
\(94\) −1.54060 −0.158901
\(95\) 6.51703 0.668633
\(96\) 0 0
\(97\) 1.30698 0.132704 0.0663519 0.997796i \(-0.478864\pi\)
0.0663519 + 0.997796i \(0.478864\pi\)
\(98\) −2.24757 −0.227039
\(99\) 0 0
\(100\) −9.96865 −0.996865
\(101\) 9.38234 0.933578 0.466789 0.884369i \(-0.345411\pi\)
0.466789 + 0.884369i \(0.345411\pi\)
\(102\) 0 0
\(103\) 3.32165 0.327292 0.163646 0.986519i \(-0.447675\pi\)
0.163646 + 0.986519i \(0.447675\pi\)
\(104\) −11.0716 −1.08566
\(105\) 0 0
\(106\) −1.59313 −0.154738
\(107\) 4.48068 0.433163 0.216582 0.976265i \(-0.430509\pi\)
0.216582 + 0.976265i \(0.430509\pi\)
\(108\) 0 0
\(109\) −4.81609 −0.461297 −0.230649 0.973037i \(-0.574085\pi\)
−0.230649 + 0.973037i \(0.574085\pi\)
\(110\) −1.52687 −0.145581
\(111\) 0 0
\(112\) −9.37069 −0.885447
\(113\) −0.395739 −0.0372280 −0.0186140 0.999827i \(-0.505925\pi\)
−0.0186140 + 0.999827i \(0.505925\pi\)
\(114\) 0 0
\(115\) 17.0612 1.59097
\(116\) 3.58233 0.332611
\(117\) 0 0
\(118\) 3.26122 0.300219
\(119\) 15.2345 1.39655
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.468970 0.0424586
\(123\) 0 0
\(124\) −4.95021 −0.444542
\(125\) 1.95397 0.174769
\(126\) 0 0
\(127\) 1.20543 0.106965 0.0534823 0.998569i \(-0.482968\pi\)
0.0534823 + 0.998569i \(0.482968\pi\)
\(128\) 11.1486 0.985405
\(129\) 0 0
\(130\) 9.53602 0.836365
\(131\) −13.5694 −1.18556 −0.592781 0.805364i \(-0.701970\pi\)
−0.592781 + 0.805364i \(0.701970\pi\)
\(132\) 0 0
\(133\) −6.87381 −0.596035
\(134\) 6.42973 0.555444
\(135\) 0 0
\(136\) −7.86447 −0.674373
\(137\) −14.7030 −1.25617 −0.628083 0.778147i \(-0.716160\pi\)
−0.628083 + 0.778147i \(0.716160\pi\)
\(138\) 0 0
\(139\) −9.78375 −0.829847 −0.414923 0.909856i \(-0.636192\pi\)
−0.414923 + 0.909856i \(0.636192\pi\)
\(140\) 19.9020 1.68203
\(141\) 0 0
\(142\) 5.16228 0.433209
\(143\) −6.24548 −0.522274
\(144\) 0 0
\(145\) −6.55218 −0.544129
\(146\) 0.482401 0.0399238
\(147\) 0 0
\(148\) −16.8449 −1.38464
\(149\) 4.72991 0.387490 0.193745 0.981052i \(-0.437937\pi\)
0.193745 + 0.981052i \(0.437937\pi\)
\(150\) 0 0
\(151\) −2.54722 −0.207290 −0.103645 0.994614i \(-0.533051\pi\)
−0.103645 + 0.994614i \(0.533051\pi\)
\(152\) 3.54845 0.287817
\(153\) 0 0
\(154\) 1.61046 0.129774
\(155\) 9.05406 0.727240
\(156\) 0 0
\(157\) 10.2105 0.814886 0.407443 0.913231i \(-0.366421\pi\)
0.407443 + 0.913231i \(0.366421\pi\)
\(158\) 5.14217 0.409089
\(159\) 0 0
\(160\) −15.7098 −1.24197
\(161\) −17.9953 −1.41822
\(162\) 0 0
\(163\) 15.2623 1.19544 0.597718 0.801706i \(-0.296074\pi\)
0.597718 + 0.801706i \(0.296074\pi\)
\(164\) −12.2916 −0.959814
\(165\) 0 0
\(166\) 5.01948 0.389588
\(167\) −15.3766 −1.18988 −0.594939 0.803771i \(-0.702824\pi\)
−0.594939 + 0.803771i \(0.702824\pi\)
\(168\) 0 0
\(169\) 26.0061 2.00047
\(170\) 6.77370 0.519519
\(171\) 0 0
\(172\) −12.5748 −0.958823
\(173\) −23.3965 −1.77880 −0.889402 0.457126i \(-0.848879\pi\)
−0.889402 + 0.457126i \(0.848879\pi\)
\(174\) 0 0
\(175\) −19.2311 −1.45373
\(176\) 2.72877 0.205689
\(177\) 0 0
\(178\) 2.78188 0.208510
\(179\) 6.26673 0.468397 0.234199 0.972189i \(-0.424753\pi\)
0.234199 + 0.972189i \(0.424753\pi\)
\(180\) 0 0
\(181\) −23.6286 −1.75630 −0.878151 0.478383i \(-0.841223\pi\)
−0.878151 + 0.478383i \(0.841223\pi\)
\(182\) −10.0581 −0.745555
\(183\) 0 0
\(184\) 9.28963 0.684841
\(185\) 30.8098 2.26518
\(186\) 0 0
\(187\) −4.43634 −0.324417
\(188\) −5.84765 −0.426483
\(189\) 0 0
\(190\) −3.05629 −0.221727
\(191\) 4.95906 0.358825 0.179413 0.983774i \(-0.442580\pi\)
0.179413 + 0.983774i \(0.442580\pi\)
\(192\) 0 0
\(193\) −6.72933 −0.484388 −0.242194 0.970228i \(-0.577867\pi\)
−0.242194 + 0.970228i \(0.577867\pi\)
\(194\) −0.612935 −0.0440061
\(195\) 0 0
\(196\) −8.53110 −0.609364
\(197\) −8.95161 −0.637776 −0.318888 0.947792i \(-0.603309\pi\)
−0.318888 + 0.947792i \(0.603309\pi\)
\(198\) 0 0
\(199\) 6.33890 0.449353 0.224676 0.974433i \(-0.427868\pi\)
0.224676 + 0.974433i \(0.427868\pi\)
\(200\) 9.92761 0.701988
\(201\) 0 0
\(202\) −4.40004 −0.309586
\(203\) 6.91089 0.485049
\(204\) 0 0
\(205\) 22.4817 1.57019
\(206\) −1.55775 −0.108534
\(207\) 0 0
\(208\) −17.0425 −1.18168
\(209\) 2.00167 0.138459
\(210\) 0 0
\(211\) −12.2782 −0.845268 −0.422634 0.906301i \(-0.638894\pi\)
−0.422634 + 0.906301i \(0.638894\pi\)
\(212\) −6.04703 −0.415312
\(213\) 0 0
\(214\) −2.10130 −0.143642
\(215\) 22.9997 1.56857
\(216\) 0 0
\(217\) −9.54974 −0.648279
\(218\) 2.25860 0.152972
\(219\) 0 0
\(220\) −5.79552 −0.390734
\(221\) 27.7071 1.86378
\(222\) 0 0
\(223\) −0.874257 −0.0585446 −0.0292723 0.999571i \(-0.509319\pi\)
−0.0292723 + 0.999571i \(0.509319\pi\)
\(224\) 16.5699 1.10712
\(225\) 0 0
\(226\) 0.185590 0.0123453
\(227\) −10.4092 −0.690885 −0.345443 0.938440i \(-0.612271\pi\)
−0.345443 + 0.938440i \(0.612271\pi\)
\(228\) 0 0
\(229\) −13.6935 −0.904892 −0.452446 0.891792i \(-0.649449\pi\)
−0.452446 + 0.891792i \(0.649449\pi\)
\(230\) −8.00120 −0.527583
\(231\) 0 0
\(232\) −3.56758 −0.234223
\(233\) 6.74441 0.441841 0.220921 0.975292i \(-0.429094\pi\)
0.220921 + 0.975292i \(0.429094\pi\)
\(234\) 0 0
\(235\) 10.6955 0.697697
\(236\) 12.3786 0.805777
\(237\) 0 0
\(238\) −7.14454 −0.463112
\(239\) −19.8593 −1.28459 −0.642295 0.766458i \(-0.722018\pi\)
−0.642295 + 0.766458i \(0.722018\pi\)
\(240\) 0 0
\(241\) −23.6717 −1.52483 −0.762415 0.647089i \(-0.775986\pi\)
−0.762415 + 0.647089i \(0.775986\pi\)
\(242\) −0.468970 −0.0301465
\(243\) 0 0
\(244\) 1.78007 0.113957
\(245\) 15.6036 0.996877
\(246\) 0 0
\(247\) −12.5014 −0.795447
\(248\) 4.92983 0.313045
\(249\) 0 0
\(250\) −0.916355 −0.0579554
\(251\) 22.7517 1.43608 0.718038 0.696004i \(-0.245040\pi\)
0.718038 + 0.696004i \(0.245040\pi\)
\(252\) 0 0
\(253\) 5.24027 0.329453
\(254\) −0.565310 −0.0354707
\(255\) 0 0
\(256\) 1.16099 0.0725622
\(257\) −5.16686 −0.322300 −0.161150 0.986930i \(-0.551520\pi\)
−0.161150 + 0.986930i \(0.551520\pi\)
\(258\) 0 0
\(259\) −32.4965 −2.01923
\(260\) 36.1958 2.24477
\(261\) 0 0
\(262\) 6.36363 0.393147
\(263\) 27.5651 1.69974 0.849869 0.526994i \(-0.176681\pi\)
0.849869 + 0.526994i \(0.176681\pi\)
\(264\) 0 0
\(265\) 11.0602 0.679421
\(266\) 3.22361 0.197652
\(267\) 0 0
\(268\) 24.4053 1.49079
\(269\) −21.8629 −1.33300 −0.666501 0.745504i \(-0.732209\pi\)
−0.666501 + 0.745504i \(0.732209\pi\)
\(270\) 0 0
\(271\) 17.0898 1.03813 0.519067 0.854734i \(-0.326280\pi\)
0.519067 + 0.854734i \(0.326280\pi\)
\(272\) −12.1058 −0.734020
\(273\) 0 0
\(274\) 6.89529 0.416560
\(275\) 5.60015 0.337702
\(276\) 0 0
\(277\) −11.7573 −0.706425 −0.353213 0.935543i \(-0.614911\pi\)
−0.353213 + 0.935543i \(0.614911\pi\)
\(278\) 4.58829 0.275187
\(279\) 0 0
\(280\) −19.8201 −1.18448
\(281\) −17.9185 −1.06893 −0.534465 0.845190i \(-0.679487\pi\)
−0.534465 + 0.845190i \(0.679487\pi\)
\(282\) 0 0
\(283\) 27.2207 1.61810 0.809050 0.587740i \(-0.199982\pi\)
0.809050 + 0.587740i \(0.199982\pi\)
\(284\) 19.5944 1.16271
\(285\) 0 0
\(286\) 2.92895 0.173192
\(287\) −23.7125 −1.39970
\(288\) 0 0
\(289\) 2.68111 0.157712
\(290\) 3.07277 0.180440
\(291\) 0 0
\(292\) 1.83104 0.107154
\(293\) −2.74534 −0.160385 −0.0801923 0.996779i \(-0.525553\pi\)
−0.0801923 + 0.996779i \(0.525553\pi\)
\(294\) 0 0
\(295\) −22.6407 −1.31819
\(296\) 16.7756 0.975060
\(297\) 0 0
\(298\) −2.21819 −0.128496
\(299\) −32.7280 −1.89271
\(300\) 0 0
\(301\) −24.2589 −1.39826
\(302\) 1.19457 0.0687397
\(303\) 0 0
\(304\) 5.46211 0.313274
\(305\) −3.25579 −0.186426
\(306\) 0 0
\(307\) 24.6262 1.40549 0.702745 0.711442i \(-0.251958\pi\)
0.702745 + 0.711442i \(0.251958\pi\)
\(308\) 6.11281 0.348309
\(309\) 0 0
\(310\) −4.24608 −0.241161
\(311\) 5.12305 0.290502 0.145251 0.989395i \(-0.453601\pi\)
0.145251 + 0.989395i \(0.453601\pi\)
\(312\) 0 0
\(313\) 6.63621 0.375101 0.187550 0.982255i \(-0.439945\pi\)
0.187550 + 0.982255i \(0.439945\pi\)
\(314\) −4.78841 −0.270226
\(315\) 0 0
\(316\) 19.5181 1.09798
\(317\) −21.5260 −1.20902 −0.604511 0.796597i \(-0.706631\pi\)
−0.604511 + 0.796597i \(0.706631\pi\)
\(318\) 0 0
\(319\) −2.01247 −0.112677
\(320\) −10.4012 −0.581444
\(321\) 0 0
\(322\) 8.43924 0.470300
\(323\) −8.88011 −0.494102
\(324\) 0 0
\(325\) −34.9757 −1.94010
\(326\) −7.15757 −0.396421
\(327\) 0 0
\(328\) 12.2410 0.675897
\(329\) −11.2810 −0.621944
\(330\) 0 0
\(331\) −31.8784 −1.75219 −0.876097 0.482134i \(-0.839862\pi\)
−0.876097 + 0.482134i \(0.839862\pi\)
\(332\) 19.0524 1.04564
\(333\) 0 0
\(334\) 7.21118 0.394578
\(335\) −44.6379 −2.43883
\(336\) 0 0
\(337\) 14.3893 0.783836 0.391918 0.920000i \(-0.371812\pi\)
0.391918 + 0.920000i \(0.371812\pi\)
\(338\) −12.1961 −0.663379
\(339\) 0 0
\(340\) 25.7109 1.39437
\(341\) 2.78091 0.150595
\(342\) 0 0
\(343\) 7.58038 0.409302
\(344\) 12.5231 0.675199
\(345\) 0 0
\(346\) 10.9723 0.589873
\(347\) 8.27031 0.443973 0.221987 0.975050i \(-0.428746\pi\)
0.221987 + 0.975050i \(0.428746\pi\)
\(348\) 0 0
\(349\) −7.70568 −0.412476 −0.206238 0.978502i \(-0.566122\pi\)
−0.206238 + 0.978502i \(0.566122\pi\)
\(350\) 9.01881 0.482076
\(351\) 0 0
\(352\) −4.82519 −0.257183
\(353\) −19.5302 −1.03949 −0.519743 0.854323i \(-0.673972\pi\)
−0.519743 + 0.854323i \(0.673972\pi\)
\(354\) 0 0
\(355\) −35.8387 −1.90212
\(356\) 10.5591 0.559634
\(357\) 0 0
\(358\) −2.93891 −0.155326
\(359\) −31.5005 −1.66254 −0.831268 0.555873i \(-0.812384\pi\)
−0.831268 + 0.555873i \(0.812384\pi\)
\(360\) 0 0
\(361\) −14.9933 −0.789121
\(362\) 11.0811 0.582411
\(363\) 0 0
\(364\) −38.1774 −2.00104
\(365\) −3.34903 −0.175296
\(366\) 0 0
\(367\) 18.6783 0.975002 0.487501 0.873122i \(-0.337909\pi\)
0.487501 + 0.873122i \(0.337909\pi\)
\(368\) 14.2995 0.745413
\(369\) 0 0
\(370\) −14.4489 −0.751161
\(371\) −11.6657 −0.605652
\(372\) 0 0
\(373\) 18.7522 0.970954 0.485477 0.874250i \(-0.338646\pi\)
0.485477 + 0.874250i \(0.338646\pi\)
\(374\) 2.08051 0.107581
\(375\) 0 0
\(376\) 5.82357 0.300328
\(377\) 12.5688 0.647329
\(378\) 0 0
\(379\) 11.9393 0.613280 0.306640 0.951826i \(-0.400795\pi\)
0.306640 + 0.951826i \(0.400795\pi\)
\(380\) −11.6007 −0.595106
\(381\) 0 0
\(382\) −2.32565 −0.118991
\(383\) −29.2370 −1.49394 −0.746971 0.664856i \(-0.768493\pi\)
−0.746971 + 0.664856i \(0.768493\pi\)
\(384\) 0 0
\(385\) −11.1805 −0.569810
\(386\) 3.15585 0.160629
\(387\) 0 0
\(388\) −2.32651 −0.118111
\(389\) −37.0444 −1.87823 −0.939114 0.343606i \(-0.888352\pi\)
−0.939114 + 0.343606i \(0.888352\pi\)
\(390\) 0 0
\(391\) −23.2476 −1.17568
\(392\) 8.49597 0.429112
\(393\) 0 0
\(394\) 4.19804 0.211494
\(395\) −35.6991 −1.79622
\(396\) 0 0
\(397\) 34.3833 1.72565 0.862825 0.505503i \(-0.168693\pi\)
0.862825 + 0.505503i \(0.168693\pi\)
\(398\) −2.97275 −0.149011
\(399\) 0 0
\(400\) 15.2815 0.764077
\(401\) −6.10544 −0.304891 −0.152446 0.988312i \(-0.548715\pi\)
−0.152446 + 0.988312i \(0.548715\pi\)
\(402\) 0 0
\(403\) −17.3681 −0.865169
\(404\) −16.7012 −0.830915
\(405\) 0 0
\(406\) −3.24100 −0.160848
\(407\) 9.46308 0.469067
\(408\) 0 0
\(409\) −28.6700 −1.41764 −0.708819 0.705390i \(-0.750772\pi\)
−0.708819 + 0.705390i \(0.750772\pi\)
\(410\) −10.5432 −0.520693
\(411\) 0 0
\(412\) −5.91276 −0.291301
\(413\) 23.8802 1.17507
\(414\) 0 0
\(415\) −34.8474 −1.71059
\(416\) 30.1356 1.47752
\(417\) 0 0
\(418\) −0.938726 −0.0459146
\(419\) 20.7874 1.01553 0.507766 0.861495i \(-0.330471\pi\)
0.507766 + 0.861495i \(0.330471\pi\)
\(420\) 0 0
\(421\) −8.10045 −0.394792 −0.197396 0.980324i \(-0.563248\pi\)
−0.197396 + 0.980324i \(0.563248\pi\)
\(422\) 5.75812 0.280301
\(423\) 0 0
\(424\) 6.02214 0.292461
\(425\) −24.8442 −1.20512
\(426\) 0 0
\(427\) 3.43403 0.166184
\(428\) −7.97590 −0.385530
\(429\) 0 0
\(430\) −10.7862 −0.520156
\(431\) 5.58219 0.268885 0.134442 0.990921i \(-0.457076\pi\)
0.134442 + 0.990921i \(0.457076\pi\)
\(432\) 0 0
\(433\) 29.3293 1.40948 0.704739 0.709467i \(-0.251064\pi\)
0.704739 + 0.709467i \(0.251064\pi\)
\(434\) 4.47854 0.214977
\(435\) 0 0
\(436\) 8.57296 0.410570
\(437\) 10.4893 0.501772
\(438\) 0 0
\(439\) −25.9500 −1.23852 −0.619262 0.785184i \(-0.712568\pi\)
−0.619262 + 0.785184i \(0.712568\pi\)
\(440\) 5.77166 0.275153
\(441\) 0 0
\(442\) −12.9938 −0.618052
\(443\) 34.4019 1.63448 0.817241 0.576296i \(-0.195503\pi\)
0.817241 + 0.576296i \(0.195503\pi\)
\(444\) 0 0
\(445\) −19.3129 −0.915521
\(446\) 0.410001 0.0194141
\(447\) 0 0
\(448\) 10.9706 0.518313
\(449\) −36.2156 −1.70912 −0.854561 0.519351i \(-0.826174\pi\)
−0.854561 + 0.519351i \(0.826174\pi\)
\(450\) 0 0
\(451\) 6.90514 0.325150
\(452\) 0.704442 0.0331342
\(453\) 0 0
\(454\) 4.88162 0.229106
\(455\) 69.8275 3.27356
\(456\) 0 0
\(457\) 23.2923 1.08957 0.544783 0.838577i \(-0.316612\pi\)
0.544783 + 0.838577i \(0.316612\pi\)
\(458\) 6.42184 0.300073
\(459\) 0 0
\(460\) −30.3701 −1.41601
\(461\) 28.2651 1.31644 0.658219 0.752827i \(-0.271310\pi\)
0.658219 + 0.752827i \(0.271310\pi\)
\(462\) 0 0
\(463\) −32.3472 −1.50330 −0.751651 0.659561i \(-0.770742\pi\)
−0.751651 + 0.659561i \(0.770742\pi\)
\(464\) −5.49157 −0.254940
\(465\) 0 0
\(466\) −3.16293 −0.146520
\(467\) 3.30570 0.152969 0.0764847 0.997071i \(-0.475630\pi\)
0.0764847 + 0.997071i \(0.475630\pi\)
\(468\) 0 0
\(469\) 47.0816 2.17403
\(470\) −5.01587 −0.231365
\(471\) 0 0
\(472\) −12.3276 −0.567425
\(473\) 7.06425 0.324815
\(474\) 0 0
\(475\) 11.2097 0.514336
\(476\) −27.1185 −1.24297
\(477\) 0 0
\(478\) 9.31341 0.425985
\(479\) 10.4588 0.477875 0.238937 0.971035i \(-0.423201\pi\)
0.238937 + 0.971035i \(0.423201\pi\)
\(480\) 0 0
\(481\) −59.1015 −2.69480
\(482\) 11.1013 0.505652
\(483\) 0 0
\(484\) −1.78007 −0.0809121
\(485\) 4.25525 0.193221
\(486\) 0 0
\(487\) 19.8688 0.900340 0.450170 0.892943i \(-0.351363\pi\)
0.450170 + 0.892943i \(0.351363\pi\)
\(488\) −1.77274 −0.0802481
\(489\) 0 0
\(490\) −7.31762 −0.330576
\(491\) −33.9034 −1.53004 −0.765020 0.644007i \(-0.777271\pi\)
−0.765020 + 0.644007i \(0.777271\pi\)
\(492\) 0 0
\(493\) 8.92800 0.402097
\(494\) 5.86280 0.263780
\(495\) 0 0
\(496\) 7.58848 0.340733
\(497\) 37.8007 1.69560
\(498\) 0 0
\(499\) −9.07523 −0.406263 −0.203131 0.979151i \(-0.565112\pi\)
−0.203131 + 0.979151i \(0.565112\pi\)
\(500\) −3.47820 −0.155550
\(501\) 0 0
\(502\) −10.6699 −0.476220
\(503\) 13.7668 0.613830 0.306915 0.951737i \(-0.400703\pi\)
0.306915 + 0.951737i \(0.400703\pi\)
\(504\) 0 0
\(505\) 30.5469 1.35932
\(506\) −2.45753 −0.109251
\(507\) 0 0
\(508\) −2.14574 −0.0952020
\(509\) −27.0557 −1.19922 −0.599611 0.800292i \(-0.704678\pi\)
−0.599611 + 0.800292i \(0.704678\pi\)
\(510\) 0 0
\(511\) 3.53238 0.156263
\(512\) −22.8416 −1.00947
\(513\) 0 0
\(514\) 2.42310 0.106878
\(515\) 10.8146 0.476548
\(516\) 0 0
\(517\) 3.28507 0.144477
\(518\) 15.2399 0.669602
\(519\) 0 0
\(520\) −36.0468 −1.58076
\(521\) 39.6985 1.73922 0.869611 0.493737i \(-0.164369\pi\)
0.869611 + 0.493737i \(0.164369\pi\)
\(522\) 0 0
\(523\) −25.4026 −1.11078 −0.555390 0.831590i \(-0.687431\pi\)
−0.555390 + 0.831590i \(0.687431\pi\)
\(524\) 24.1544 1.05519
\(525\) 0 0
\(526\) −12.9272 −0.563653
\(527\) −12.3371 −0.537411
\(528\) 0 0
\(529\) 4.46043 0.193932
\(530\) −5.18689 −0.225304
\(531\) 0 0
\(532\) 12.2358 0.530491
\(533\) −43.1260 −1.86799
\(534\) 0 0
\(535\) 14.5881 0.630700
\(536\) −24.3048 −1.04981
\(537\) 0 0
\(538\) 10.2530 0.442039
\(539\) 4.79257 0.206431
\(540\) 0 0
\(541\) −29.6053 −1.27283 −0.636415 0.771347i \(-0.719583\pi\)
−0.636415 + 0.771347i \(0.719583\pi\)
\(542\) −8.01462 −0.344258
\(543\) 0 0
\(544\) 21.4062 0.917782
\(545\) −15.6802 −0.671664
\(546\) 0 0
\(547\) 6.80847 0.291109 0.145555 0.989350i \(-0.453503\pi\)
0.145555 + 0.989350i \(0.453503\pi\)
\(548\) 26.1724 1.11803
\(549\) 0 0
\(550\) −2.62630 −0.111986
\(551\) −4.02831 −0.171612
\(552\) 0 0
\(553\) 37.6535 1.60119
\(554\) 5.51381 0.234259
\(555\) 0 0
\(556\) 17.4157 0.738592
\(557\) 31.2260 1.32309 0.661544 0.749906i \(-0.269901\pi\)
0.661544 + 0.749906i \(0.269901\pi\)
\(558\) 0 0
\(559\) −44.1197 −1.86606
\(560\) −30.5090 −1.28924
\(561\) 0 0
\(562\) 8.40326 0.354470
\(563\) −39.1364 −1.64940 −0.824701 0.565570i \(-0.808656\pi\)
−0.824701 + 0.565570i \(0.808656\pi\)
\(564\) 0 0
\(565\) −1.28844 −0.0542052
\(566\) −12.7657 −0.536581
\(567\) 0 0
\(568\) −19.5138 −0.818779
\(569\) 6.79224 0.284746 0.142373 0.989813i \(-0.454527\pi\)
0.142373 + 0.989813i \(0.454527\pi\)
\(570\) 0 0
\(571\) 30.3770 1.27124 0.635618 0.772004i \(-0.280745\pi\)
0.635618 + 0.772004i \(0.280745\pi\)
\(572\) 11.1174 0.464841
\(573\) 0 0
\(574\) 11.1204 0.464158
\(575\) 29.3463 1.22383
\(576\) 0 0
\(577\) −8.71413 −0.362774 −0.181387 0.983412i \(-0.558059\pi\)
−0.181387 + 0.983412i \(0.558059\pi\)
\(578\) −1.25736 −0.0522992
\(579\) 0 0
\(580\) 11.6633 0.484293
\(581\) 36.7551 1.52486
\(582\) 0 0
\(583\) 3.39708 0.140693
\(584\) −1.82351 −0.0754572
\(585\) 0 0
\(586\) 1.28748 0.0531855
\(587\) −33.8989 −1.39916 −0.699580 0.714555i \(-0.746629\pi\)
−0.699580 + 0.714555i \(0.746629\pi\)
\(588\) 0 0
\(589\) 5.56648 0.229363
\(590\) 10.6178 0.437129
\(591\) 0 0
\(592\) 25.8226 1.06130
\(593\) 11.0493 0.453740 0.226870 0.973925i \(-0.427151\pi\)
0.226870 + 0.973925i \(0.427151\pi\)
\(594\) 0 0
\(595\) 49.6004 2.03342
\(596\) −8.41957 −0.344879
\(597\) 0 0
\(598\) 15.3485 0.627645
\(599\) −40.5277 −1.65592 −0.827958 0.560791i \(-0.810497\pi\)
−0.827958 + 0.560791i \(0.810497\pi\)
\(600\) 0 0
\(601\) −3.05022 −0.124421 −0.0622106 0.998063i \(-0.519815\pi\)
−0.0622106 + 0.998063i \(0.519815\pi\)
\(602\) 11.3767 0.463679
\(603\) 0 0
\(604\) 4.53422 0.184495
\(605\) 3.25579 0.132367
\(606\) 0 0
\(607\) −38.5560 −1.56494 −0.782469 0.622690i \(-0.786040\pi\)
−0.782469 + 0.622690i \(0.786040\pi\)
\(608\) −9.65846 −0.391702
\(609\) 0 0
\(610\) 1.52687 0.0618210
\(611\) −20.5169 −0.830023
\(612\) 0 0
\(613\) −36.0475 −1.45594 −0.727972 0.685607i \(-0.759537\pi\)
−0.727972 + 0.685607i \(0.759537\pi\)
\(614\) −11.5489 −0.466077
\(615\) 0 0
\(616\) −6.08764 −0.245278
\(617\) −20.1078 −0.809510 −0.404755 0.914425i \(-0.632643\pi\)
−0.404755 + 0.914425i \(0.632643\pi\)
\(618\) 0 0
\(619\) 46.0006 1.84892 0.924460 0.381280i \(-0.124516\pi\)
0.924460 + 0.381280i \(0.124516\pi\)
\(620\) −16.1168 −0.647268
\(621\) 0 0
\(622\) −2.40256 −0.0963338
\(623\) 20.3703 0.816117
\(624\) 0 0
\(625\) −21.6390 −0.865562
\(626\) −3.11219 −0.124388
\(627\) 0 0
\(628\) −18.1754 −0.725276
\(629\) −41.9814 −1.67391
\(630\) 0 0
\(631\) −41.3031 −1.64425 −0.822124 0.569308i \(-0.807211\pi\)
−0.822124 + 0.569308i \(0.807211\pi\)
\(632\) −19.4377 −0.773191
\(633\) 0 0
\(634\) 10.0951 0.400926
\(635\) 3.92462 0.155744
\(636\) 0 0
\(637\) −29.9319 −1.18595
\(638\) 0.943788 0.0373649
\(639\) 0 0
\(640\) 36.2974 1.43478
\(641\) 9.05117 0.357500 0.178750 0.983895i \(-0.442795\pi\)
0.178750 + 0.983895i \(0.442795\pi\)
\(642\) 0 0
\(643\) 40.7525 1.60712 0.803562 0.595221i \(-0.202936\pi\)
0.803562 + 0.595221i \(0.202936\pi\)
\(644\) 32.0328 1.26227
\(645\) 0 0
\(646\) 4.16451 0.163850
\(647\) 28.8295 1.13340 0.566702 0.823923i \(-0.308219\pi\)
0.566702 + 0.823923i \(0.308219\pi\)
\(648\) 0 0
\(649\) −6.95400 −0.272968
\(650\) 16.4025 0.643361
\(651\) 0 0
\(652\) −27.1679 −1.06398
\(653\) −17.2920 −0.676690 −0.338345 0.941022i \(-0.609867\pi\)
−0.338345 + 0.941022i \(0.609867\pi\)
\(654\) 0 0
\(655\) −44.1790 −1.72622
\(656\) 18.8426 0.735678
\(657\) 0 0
\(658\) 5.29047 0.206244
\(659\) 7.68996 0.299558 0.149779 0.988719i \(-0.452144\pi\)
0.149779 + 0.988719i \(0.452144\pi\)
\(660\) 0 0
\(661\) 5.25986 0.204585 0.102292 0.994754i \(-0.467382\pi\)
0.102292 + 0.994754i \(0.467382\pi\)
\(662\) 14.9500 0.581049
\(663\) 0 0
\(664\) −18.9740 −0.736334
\(665\) −22.3797 −0.867847
\(666\) 0 0
\(667\) −10.5459 −0.408338
\(668\) 27.3714 1.05903
\(669\) 0 0
\(670\) 20.9338 0.808744
\(671\) −1.00000 −0.0386046
\(672\) 0 0
\(673\) −42.5265 −1.63928 −0.819638 0.572881i \(-0.805826\pi\)
−0.819638 + 0.572881i \(0.805826\pi\)
\(674\) −6.74816 −0.259930
\(675\) 0 0
\(676\) −46.2925 −1.78048
\(677\) 21.8036 0.837982 0.418991 0.907990i \(-0.362384\pi\)
0.418991 + 0.907990i \(0.362384\pi\)
\(678\) 0 0
\(679\) −4.48821 −0.172242
\(680\) −25.6050 −0.981909
\(681\) 0 0
\(682\) −1.30417 −0.0499391
\(683\) 3.87219 0.148165 0.0740826 0.997252i \(-0.476397\pi\)
0.0740826 + 0.997252i \(0.476397\pi\)
\(684\) 0 0
\(685\) −47.8700 −1.82902
\(686\) −3.55497 −0.135730
\(687\) 0 0
\(688\) 19.2767 0.734919
\(689\) −21.2164 −0.808281
\(690\) 0 0
\(691\) 26.2173 0.997353 0.498677 0.866788i \(-0.333820\pi\)
0.498677 + 0.866788i \(0.333820\pi\)
\(692\) 41.6474 1.58320
\(693\) 0 0
\(694\) −3.87853 −0.147227
\(695\) −31.8538 −1.20828
\(696\) 0 0
\(697\) −30.6336 −1.16033
\(698\) 3.61374 0.136782
\(699\) 0 0
\(700\) 34.2327 1.29387
\(701\) −14.6365 −0.552812 −0.276406 0.961041i \(-0.589143\pi\)
−0.276406 + 0.961041i \(0.589143\pi\)
\(702\) 0 0
\(703\) 18.9420 0.714411
\(704\) −3.19467 −0.120404
\(705\) 0 0
\(706\) 9.15907 0.344706
\(707\) −32.2193 −1.21173
\(708\) 0 0
\(709\) −18.9404 −0.711321 −0.355661 0.934615i \(-0.615744\pi\)
−0.355661 + 0.934615i \(0.615744\pi\)
\(710\) 16.8073 0.630766
\(711\) 0 0
\(712\) −10.5157 −0.394092
\(713\) 14.5727 0.545753
\(714\) 0 0
\(715\) −20.3340 −0.760447
\(716\) −11.1552 −0.416889
\(717\) 0 0
\(718\) 14.7728 0.551317
\(719\) 10.5219 0.392399 0.196199 0.980564i \(-0.437140\pi\)
0.196199 + 0.980564i \(0.437140\pi\)
\(720\) 0 0
\(721\) −11.4067 −0.424806
\(722\) 7.03141 0.261682
\(723\) 0 0
\(724\) 42.0606 1.56317
\(725\) −11.2701 −0.418563
\(726\) 0 0
\(727\) −49.5012 −1.83590 −0.917949 0.396699i \(-0.870156\pi\)
−0.917949 + 0.396699i \(0.870156\pi\)
\(728\) 38.0203 1.40912
\(729\) 0 0
\(730\) 1.57059 0.0581303
\(731\) −31.3394 −1.15913
\(732\) 0 0
\(733\) 28.5502 1.05453 0.527263 0.849702i \(-0.323218\pi\)
0.527263 + 0.849702i \(0.323218\pi\)
\(734\) −8.75959 −0.323322
\(735\) 0 0
\(736\) −25.2853 −0.932029
\(737\) −13.7103 −0.505026
\(738\) 0 0
\(739\) 21.0440 0.774115 0.387057 0.922056i \(-0.373492\pi\)
0.387057 + 0.922056i \(0.373492\pi\)
\(740\) −54.8434 −2.01609
\(741\) 0 0
\(742\) 5.47086 0.200841
\(743\) 17.4017 0.638405 0.319202 0.947687i \(-0.396585\pi\)
0.319202 + 0.947687i \(0.396585\pi\)
\(744\) 0 0
\(745\) 15.3996 0.564198
\(746\) −8.79424 −0.321980
\(747\) 0 0
\(748\) 7.89698 0.288742
\(749\) −15.3868 −0.562221
\(750\) 0 0
\(751\) 23.4793 0.856773 0.428387 0.903596i \(-0.359082\pi\)
0.428387 + 0.903596i \(0.359082\pi\)
\(752\) 8.96421 0.326891
\(753\) 0 0
\(754\) −5.89441 −0.214662
\(755\) −8.29320 −0.301820
\(756\) 0 0
\(757\) −18.9342 −0.688174 −0.344087 0.938938i \(-0.611812\pi\)
−0.344087 + 0.938938i \(0.611812\pi\)
\(758\) −5.59917 −0.203371
\(759\) 0 0
\(760\) 11.5530 0.419071
\(761\) 6.95761 0.252213 0.126106 0.992017i \(-0.459752\pi\)
0.126106 + 0.992017i \(0.459752\pi\)
\(762\) 0 0
\(763\) 16.5386 0.598737
\(764\) −8.82747 −0.319367
\(765\) 0 0
\(766\) 13.7113 0.495409
\(767\) 43.4311 1.56821
\(768\) 0 0
\(769\) −22.1075 −0.797217 −0.398609 0.917121i \(-0.630507\pi\)
−0.398609 + 0.917121i \(0.630507\pi\)
\(770\) 5.24331 0.188956
\(771\) 0 0
\(772\) 11.9787 0.431121
\(773\) −22.7271 −0.817437 −0.408718 0.912661i \(-0.634024\pi\)
−0.408718 + 0.912661i \(0.634024\pi\)
\(774\) 0 0
\(775\) 15.5735 0.559418
\(776\) 2.31693 0.0831731
\(777\) 0 0
\(778\) 17.3727 0.622843
\(779\) 13.8218 0.495219
\(780\) 0 0
\(781\) −11.0077 −0.393886
\(782\) 10.9024 0.389870
\(783\) 0 0
\(784\) 13.0778 0.467065
\(785\) 33.2432 1.18650
\(786\) 0 0
\(787\) 0.0752940 0.00268394 0.00134197 0.999999i \(-0.499573\pi\)
0.00134197 + 0.999999i \(0.499573\pi\)
\(788\) 15.9345 0.567642
\(789\) 0 0
\(790\) 16.7418 0.595647
\(791\) 1.35898 0.0483198
\(792\) 0 0
\(793\) 6.24548 0.221784
\(794\) −16.1248 −0.572246
\(795\) 0 0
\(796\) −11.2837 −0.399939
\(797\) −22.0267 −0.780225 −0.390112 0.920767i \(-0.627564\pi\)
−0.390112 + 0.920767i \(0.627564\pi\)
\(798\) 0 0
\(799\) −14.5737 −0.515580
\(800\) −27.0218 −0.955365
\(801\) 0 0
\(802\) 2.86327 0.101106
\(803\) −1.02864 −0.0362998
\(804\) 0 0
\(805\) −58.5887 −2.06498
\(806\) 8.14514 0.286900
\(807\) 0 0
\(808\) 16.6324 0.585127
\(809\) −18.2011 −0.639918 −0.319959 0.947431i \(-0.603669\pi\)
−0.319959 + 0.947431i \(0.603669\pi\)
\(810\) 0 0
\(811\) 51.6355 1.81317 0.906584 0.422025i \(-0.138680\pi\)
0.906584 + 0.422025i \(0.138680\pi\)
\(812\) −12.3018 −0.431710
\(813\) 0 0
\(814\) −4.43790 −0.155548
\(815\) 49.6908 1.74059
\(816\) 0 0
\(817\) 14.1403 0.494708
\(818\) 13.4454 0.470106
\(819\) 0 0
\(820\) −40.0189 −1.39752
\(821\) 1.06685 0.0372334 0.0186167 0.999827i \(-0.494074\pi\)
0.0186167 + 0.999827i \(0.494074\pi\)
\(822\) 0 0
\(823\) 41.1805 1.43546 0.717731 0.696321i \(-0.245181\pi\)
0.717731 + 0.696321i \(0.245181\pi\)
\(824\) 5.88842 0.205133
\(825\) 0 0
\(826\) −11.1991 −0.389667
\(827\) −6.70863 −0.233282 −0.116641 0.993174i \(-0.537213\pi\)
−0.116641 + 0.993174i \(0.537213\pi\)
\(828\) 0 0
\(829\) 50.0952 1.73988 0.869939 0.493159i \(-0.164158\pi\)
0.869939 + 0.493159i \(0.164158\pi\)
\(830\) 16.3424 0.567252
\(831\) 0 0
\(832\) 19.9523 0.691721
\(833\) −21.2615 −0.736666
\(834\) 0 0
\(835\) −50.0630 −1.73250
\(836\) −3.56312 −0.123233
\(837\) 0 0
\(838\) −9.74868 −0.336763
\(839\) −16.6741 −0.575655 −0.287827 0.957682i \(-0.592933\pi\)
−0.287827 + 0.957682i \(0.592933\pi\)
\(840\) 0 0
\(841\) −24.9500 −0.860344
\(842\) 3.79887 0.130918
\(843\) 0 0
\(844\) 21.8561 0.752317
\(845\) 84.6702 2.91274
\(846\) 0 0
\(847\) −3.43403 −0.117995
\(848\) 9.26986 0.318328
\(849\) 0 0
\(850\) 11.6512 0.399632
\(851\) 49.5891 1.69989
\(852\) 0 0
\(853\) 37.6327 1.28852 0.644259 0.764807i \(-0.277166\pi\)
0.644259 + 0.764807i \(0.277166\pi\)
\(854\) −1.61046 −0.0551087
\(855\) 0 0
\(856\) 7.94307 0.271488
\(857\) −37.9851 −1.29755 −0.648773 0.760982i \(-0.724718\pi\)
−0.648773 + 0.760982i \(0.724718\pi\)
\(858\) 0 0
\(859\) −4.26900 −0.145656 −0.0728282 0.997345i \(-0.523202\pi\)
−0.0728282 + 0.997345i \(0.523202\pi\)
\(860\) −40.9410 −1.39608
\(861\) 0 0
\(862\) −2.61788 −0.0891654
\(863\) 5.50516 0.187398 0.0936990 0.995601i \(-0.470131\pi\)
0.0936990 + 0.995601i \(0.470131\pi\)
\(864\) 0 0
\(865\) −76.1741 −2.59000
\(866\) −13.7546 −0.467399
\(867\) 0 0
\(868\) 16.9992 0.576990
\(869\) −10.9648 −0.371956
\(870\) 0 0
\(871\) 85.6275 2.90138
\(872\) −8.53766 −0.289122
\(873\) 0 0
\(874\) −4.91918 −0.166394
\(875\) −6.71000 −0.226840
\(876\) 0 0
\(877\) −37.6292 −1.27065 −0.635324 0.772246i \(-0.719133\pi\)
−0.635324 + 0.772246i \(0.719133\pi\)
\(878\) 12.1698 0.410709
\(879\) 0 0
\(880\) 8.88430 0.299490
\(881\) −25.6031 −0.862589 −0.431295 0.902211i \(-0.641943\pi\)
−0.431295 + 0.902211i \(0.641943\pi\)
\(882\) 0 0
\(883\) 16.3426 0.549972 0.274986 0.961448i \(-0.411327\pi\)
0.274986 + 0.961448i \(0.411327\pi\)
\(884\) −49.3205 −1.65883
\(885\) 0 0
\(886\) −16.1334 −0.542014
\(887\) 4.22569 0.141885 0.0709425 0.997480i \(-0.477399\pi\)
0.0709425 + 0.997480i \(0.477399\pi\)
\(888\) 0 0
\(889\) −4.13948 −0.138834
\(890\) 9.05720 0.303598
\(891\) 0 0
\(892\) 1.55624 0.0521067
\(893\) 6.57564 0.220046
\(894\) 0 0
\(895\) 20.4031 0.682002
\(896\) −38.2846 −1.27900
\(897\) 0 0
\(898\) 16.9841 0.566765
\(899\) −5.59650 −0.186654
\(900\) 0 0
\(901\) −15.0706 −0.502075
\(902\) −3.23831 −0.107824
\(903\) 0 0
\(904\) −0.701542 −0.0233329
\(905\) −76.9298 −2.55723
\(906\) 0 0
\(907\) 4.49047 0.149104 0.0745519 0.997217i \(-0.476247\pi\)
0.0745519 + 0.997217i \(0.476247\pi\)
\(908\) 18.5291 0.614911
\(909\) 0 0
\(910\) −32.7470 −1.08555
\(911\) 6.20158 0.205468 0.102734 0.994709i \(-0.467241\pi\)
0.102734 + 0.994709i \(0.467241\pi\)
\(912\) 0 0
\(913\) −10.7032 −0.354224
\(914\) −10.9234 −0.361313
\(915\) 0 0
\(916\) 24.3754 0.805384
\(917\) 46.5977 1.53879
\(918\) 0 0
\(919\) 57.4546 1.89525 0.947627 0.319380i \(-0.103475\pi\)
0.947627 + 0.319380i \(0.103475\pi\)
\(920\) 30.2451 0.997150
\(921\) 0 0
\(922\) −13.2555 −0.436546
\(923\) 68.7483 2.26288
\(924\) 0 0
\(925\) 52.9947 1.74245
\(926\) 15.1699 0.498513
\(927\) 0 0
\(928\) 9.71055 0.318764
\(929\) 14.0361 0.460511 0.230255 0.973130i \(-0.426044\pi\)
0.230255 + 0.973130i \(0.426044\pi\)
\(930\) 0 0
\(931\) 9.59317 0.314403
\(932\) −12.0055 −0.393253
\(933\) 0 0
\(934\) −1.55027 −0.0507265
\(935\) −14.4438 −0.472362
\(936\) 0 0
\(937\) 28.3710 0.926840 0.463420 0.886139i \(-0.346622\pi\)
0.463420 + 0.886139i \(0.346622\pi\)
\(938\) −22.0799 −0.720934
\(939\) 0 0
\(940\) −19.0387 −0.620974
\(941\) 41.8840 1.36538 0.682690 0.730708i \(-0.260810\pi\)
0.682690 + 0.730708i \(0.260810\pi\)
\(942\) 0 0
\(943\) 36.1848 1.17834
\(944\) −18.9759 −0.617612
\(945\) 0 0
\(946\) −3.31292 −0.107712
\(947\) −41.3592 −1.34399 −0.671996 0.740555i \(-0.734563\pi\)
−0.671996 + 0.740555i \(0.734563\pi\)
\(948\) 0 0
\(949\) 6.42434 0.208543
\(950\) −5.25701 −0.170560
\(951\) 0 0
\(952\) 27.0068 0.875297
\(953\) 41.6088 1.34784 0.673920 0.738804i \(-0.264609\pi\)
0.673920 + 0.738804i \(0.264609\pi\)
\(954\) 0 0
\(955\) 16.1457 0.522461
\(956\) 35.3508 1.14333
\(957\) 0 0
\(958\) −4.90486 −0.158469
\(959\) 50.4907 1.63043
\(960\) 0 0
\(961\) −23.2665 −0.750533
\(962\) 27.7168 0.893627
\(963\) 0 0
\(964\) 42.1372 1.35715
\(965\) −21.9093 −0.705284
\(966\) 0 0
\(967\) −21.0341 −0.676410 −0.338205 0.941072i \(-0.609820\pi\)
−0.338205 + 0.941072i \(0.609820\pi\)
\(968\) 1.77274 0.0569780
\(969\) 0 0
\(970\) −1.99559 −0.0640744
\(971\) 47.5838 1.52704 0.763518 0.645786i \(-0.223470\pi\)
0.763518 + 0.645786i \(0.223470\pi\)
\(972\) 0 0
\(973\) 33.5977 1.07709
\(974\) −9.31786 −0.298564
\(975\) 0 0
\(976\) −2.72877 −0.0873459
\(977\) −4.54384 −0.145370 −0.0726852 0.997355i \(-0.523157\pi\)
−0.0726852 + 0.997355i \(0.523157\pi\)
\(978\) 0 0
\(979\) −5.93188 −0.189584
\(980\) −27.7754 −0.887254
\(981\) 0 0
\(982\) 15.8997 0.507379
\(983\) 7.20373 0.229763 0.114882 0.993379i \(-0.463351\pi\)
0.114882 + 0.993379i \(0.463351\pi\)
\(984\) 0 0
\(985\) −29.1445 −0.928622
\(986\) −4.18697 −0.133340
\(987\) 0 0
\(988\) 22.2534 0.707974
\(989\) 37.0186 1.17712
\(990\) 0 0
\(991\) −9.75410 −0.309849 −0.154925 0.987926i \(-0.549513\pi\)
−0.154925 + 0.987926i \(0.549513\pi\)
\(992\) −13.4184 −0.426036
\(993\) 0 0
\(994\) −17.7274 −0.562280
\(995\) 20.6381 0.654272
\(996\) 0 0
\(997\) 43.2494 1.36972 0.684862 0.728673i \(-0.259863\pi\)
0.684862 + 0.728673i \(0.259863\pi\)
\(998\) 4.25601 0.134722
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6039.2.a.g.1.7 13
3.2 odd 2 2013.2.a.f.1.7 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2013.2.a.f.1.7 13 3.2 odd 2
6039.2.a.g.1.7 13 1.1 even 1 trivial