Properties

Label 6036.2.a.i
Level 6036
Weight 2
Character orbit 6036.a
Self dual Yes
Analytic conductor 48.198
Analytic rank 0
Dimension 26
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6036 = 2^{2} \cdot 3 \cdot 503 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6036.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.19770266\)
Analytic rank: \(0\)
Dimension: \(26\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(26q \) \(\mathstrut -\mathstrut 26q^{3} \) \(\mathstrut +\mathstrut 6q^{5} \) \(\mathstrut +\mathstrut 5q^{7} \) \(\mathstrut +\mathstrut 26q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(26q \) \(\mathstrut -\mathstrut 26q^{3} \) \(\mathstrut +\mathstrut 6q^{5} \) \(\mathstrut +\mathstrut 5q^{7} \) \(\mathstrut +\mathstrut 26q^{9} \) \(\mathstrut -\mathstrut 11q^{11} \) \(\mathstrut +\mathstrut 13q^{13} \) \(\mathstrut -\mathstrut 6q^{15} \) \(\mathstrut +\mathstrut 12q^{17} \) \(\mathstrut -\mathstrut q^{19} \) \(\mathstrut -\mathstrut 5q^{21} \) \(\mathstrut -\mathstrut 22q^{23} \) \(\mathstrut +\mathstrut 48q^{25} \) \(\mathstrut -\mathstrut 26q^{27} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut +\mathstrut 19q^{31} \) \(\mathstrut +\mathstrut 11q^{33} \) \(\mathstrut -\mathstrut 21q^{35} \) \(\mathstrut +\mathstrut 20q^{37} \) \(\mathstrut -\mathstrut 13q^{39} \) \(\mathstrut +\mathstrut 25q^{41} \) \(\mathstrut +\mathstrut 4q^{43} \) \(\mathstrut +\mathstrut 6q^{45} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut +\mathstrut 67q^{49} \) \(\mathstrut -\mathstrut 12q^{51} \) \(\mathstrut -\mathstrut 5q^{53} \) \(\mathstrut +\mathstrut 20q^{55} \) \(\mathstrut +\mathstrut q^{57} \) \(\mathstrut -\mathstrut 18q^{59} \) \(\mathstrut +\mathstrut 43q^{61} \) \(\mathstrut +\mathstrut 5q^{63} \) \(\mathstrut +\mathstrut 41q^{65} \) \(\mathstrut +\mathstrut 5q^{67} \) \(\mathstrut +\mathstrut 22q^{69} \) \(\mathstrut -\mathstrut q^{71} \) \(\mathstrut +\mathstrut 22q^{73} \) \(\mathstrut -\mathstrut 48q^{75} \) \(\mathstrut +\mathstrut 23q^{77} \) \(\mathstrut +\mathstrut 16q^{79} \) \(\mathstrut +\mathstrut 26q^{81} \) \(\mathstrut -\mathstrut 19q^{83} \) \(\mathstrut +\mathstrut 29q^{85} \) \(\mathstrut -\mathstrut 6q^{87} \) \(\mathstrut +\mathstrut 49q^{89} \) \(\mathstrut -\mathstrut 13q^{91} \) \(\mathstrut -\mathstrut 19q^{93} \) \(\mathstrut -\mathstrut 26q^{95} \) \(\mathstrut +\mathstrut 25q^{97} \) \(\mathstrut -\mathstrut 11q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 0 −1.00000 0 −4.35282 0 4.52941 0 1.00000 0
1.2 0 −1.00000 0 −3.83715 0 0.0390685 0 1.00000 0
1.3 0 −1.00000 0 −3.00702 0 4.42560 0 1.00000 0
1.4 0 −1.00000 0 −2.74974 0 1.46678 0 1.00000 0
1.5 0 −1.00000 0 −2.60444 0 −1.53102 0 1.00000 0
1.6 0 −1.00000 0 −2.57233 0 −0.722776 0 1.00000 0
1.7 0 −1.00000 0 −2.38993 0 0.588107 0 1.00000 0
1.8 0 −1.00000 0 −1.79097 0 −4.44185 0 1.00000 0
1.9 0 −1.00000 0 −1.78585 0 −2.07926 0 1.00000 0
1.10 0 −1.00000 0 −0.970233 0 3.74274 0 1.00000 0
1.11 0 −1.00000 0 −0.461317 0 −3.07386 0 1.00000 0
1.12 0 −1.00000 0 −0.244833 0 2.69533 0 1.00000 0
1.13 0 −1.00000 0 0.0581310 0 −2.78315 0 1.00000 0
1.14 0 −1.00000 0 0.344611 0 2.72948 0 1.00000 0
1.15 0 −1.00000 0 0.754498 0 −4.03319 0 1.00000 0
1.16 0 −1.00000 0 1.62125 0 5.08723 0 1.00000 0
1.17 0 −1.00000 0 1.66086 0 −2.19144 0 1.00000 0
1.18 0 −1.00000 0 1.90366 0 −3.61918 0 1.00000 0
1.19 0 −1.00000 0 2.09204 0 −1.11995 0 1.00000 0
1.20 0 −1.00000 0 2.53458 0 3.60576 0 1.00000 0
See all 26 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.26
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(503\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6036))\):

\(T_{5}^{26} - \cdots\)
\(T_{7}^{26} - \cdots\)