Properties

Label 6025.2.a.q
Level 6025
Weight 2
Character orbit 6025.a
Self dual Yes
Analytic conductor 48.110
Analytic rank 0
Dimension 66
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6025 = 5^{2} \cdot 241 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6025.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.1098672178\)
Analytic rank: \(0\)
Dimension: \(66\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(66q \) \(\mathstrut +\mathstrut 78q^{4} \) \(\mathstrut +\mathstrut 16q^{6} \) \(\mathstrut +\mathstrut 90q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(66q \) \(\mathstrut +\mathstrut 78q^{4} \) \(\mathstrut +\mathstrut 16q^{6} \) \(\mathstrut +\mathstrut 90q^{9} \) \(\mathstrut +\mathstrut 48q^{11} \) \(\mathstrut +\mathstrut 30q^{14} \) \(\mathstrut +\mathstrut 98q^{16} \) \(\mathstrut +\mathstrut 12q^{19} \) \(\mathstrut +\mathstrut 18q^{21} \) \(\mathstrut +\mathstrut 42q^{24} \) \(\mathstrut +\mathstrut 48q^{26} \) \(\mathstrut +\mathstrut 56q^{29} \) \(\mathstrut +\mathstrut 48q^{31} \) \(\mathstrut +\mathstrut 8q^{34} \) \(\mathstrut +\mathstrut 158q^{36} \) \(\mathstrut +\mathstrut 84q^{39} \) \(\mathstrut +\mathstrut 56q^{41} \) \(\mathstrut +\mathstrut 144q^{44} \) \(\mathstrut +\mathstrut 36q^{46} \) \(\mathstrut +\mathstrut 98q^{49} \) \(\mathstrut +\mathstrut 44q^{51} \) \(\mathstrut +\mathstrut 86q^{54} \) \(\mathstrut +\mathstrut 104q^{56} \) \(\mathstrut +\mathstrut 108q^{59} \) \(\mathstrut +\mathstrut 22q^{61} \) \(\mathstrut +\mathstrut 136q^{64} \) \(\mathstrut +\mathstrut 74q^{66} \) \(\mathstrut +\mathstrut 20q^{69} \) \(\mathstrut +\mathstrut 212q^{71} \) \(\mathstrut +\mathstrut 84q^{74} \) \(\mathstrut +\mathstrut 6q^{76} \) \(\mathstrut +\mathstrut 66q^{79} \) \(\mathstrut +\mathstrut 162q^{81} \) \(\mathstrut -\mathstrut 52q^{84} \) \(\mathstrut +\mathstrut 100q^{86} \) \(\mathstrut +\mathstrut 54q^{89} \) \(\mathstrut +\mathstrut 72q^{91} \) \(\mathstrut -\mathstrut 96q^{94} \) \(\mathstrut +\mathstrut 122q^{96} \) \(\mathstrut +\mathstrut 112q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.81437 0.650611 5.92068 0 −1.83106 −2.61686 −11.0342 −2.57671 0
1.2 −2.73687 −1.37229 5.49044 0 3.75578 −0.639768 −9.55288 −1.11681 0
1.3 −2.70326 −3.35528 5.30763 0 9.07021 3.43095 −8.94141 8.25791 0
1.4 −2.60935 2.94245 4.80870 0 −7.67788 2.28979 −7.32887 5.65803 0
1.5 −2.55975 2.19931 4.55230 0 −5.62967 −4.06530 −6.53325 1.83695 0
1.6 −2.48606 −2.54168 4.18051 0 6.31876 −3.51286 −5.42088 3.46011 0
1.7 −2.48219 −1.89252 4.16124 0 4.69758 −3.72710 −5.36461 0.581628 0
1.8 −2.37391 0.703313 3.63543 0 −1.66960 4.47866 −3.88235 −2.50535 0
1.9 −2.33352 1.59052 3.44531 0 −3.71151 −3.91727 −3.37267 −0.470249 0
1.10 −2.31942 −2.66924 3.37972 0 6.19110 0.0358936 −3.20016 4.12486 0
1.11 −2.20997 −2.26852 2.88397 0 5.01336 0.372373 −1.95355 2.14617 0
1.12 −2.06213 2.32228 2.25239 0 −4.78886 3.49367 −0.520471 2.39299 0
1.13 −1.90752 0.479938 1.63863 0 −0.915491 1.00580 0.689327 −2.76966 0
1.14 −1.85162 0.305536 1.42851 0 −0.565737 −2.51443 1.05818 −2.90665 0
1.15 −1.85071 2.57343 1.42511 0 −4.76266 −3.52351 1.06395 3.62254 0
1.16 −1.67685 3.17567 0.811815 0 −5.32511 0.164609 1.99240 7.08488 0
1.17 −1.64329 −3.10101 0.700400 0 5.09585 −0.459168 2.13562 6.61624 0
1.18 −1.54552 −0.0372080 0.388631 0 0.0575057 5.06287 2.49040 −2.99862 0
1.19 −1.47177 −1.07414 0.166115 0 1.58089 −3.64779 2.69906 −1.84623 0
1.20 −1.38861 −0.0366779 −0.0717484 0 0.0509315 3.69082 2.87686 −2.99865 0
See all 66 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.66
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(5\) \(-1\)
\(241\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6025))\):

\(T_{2}^{66} - \cdots\)
\(T_{3}^{66} - \cdots\)