Properties

Label 6022.2.a.a
Level 6022
Weight 2
Character orbit 6022.a
Self dual Yes
Analytic conductor 48.086
Analytic rank 2
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6022 = 2 \cdot 3011 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6022.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.0859120972\)
Analytic rank: \(2\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(+ q^{2}\) \( + ( -1 - \beta_{1} ) q^{3} \) \(+ q^{4}\) \( + ( -3 + \beta_{1} - \beta_{2} ) q^{5} \) \( + ( -1 - \beta_{1} ) q^{6} \) \( + ( -3 + \beta_{1} + \beta_{2} ) q^{7} \) \(+ q^{8}\) \( + ( 2 \beta_{1} + \beta_{2} ) q^{9} \) \(+O(q^{10})\) \( q\) \(+ q^{2}\) \( + ( -1 - \beta_{1} ) q^{3} \) \(+ q^{4}\) \( + ( -3 + \beta_{1} - \beta_{2} ) q^{5} \) \( + ( -1 - \beta_{1} ) q^{6} \) \( + ( -3 + \beta_{1} + \beta_{2} ) q^{7} \) \(+ q^{8}\) \( + ( 2 \beta_{1} + \beta_{2} ) q^{9} \) \( + ( -3 + \beta_{1} - \beta_{2} ) q^{10} \) \( + ( -4 - \beta_{1} ) q^{11} \) \( + ( -1 - \beta_{1} ) q^{12} \) \( + ( -5 + \beta_{1} - \beta_{2} ) q^{13} \) \( + ( -3 + \beta_{1} + \beta_{2} ) q^{14} \) \( + ( 2 + 2 \beta_{1} + \beta_{2} ) q^{15} \) \(+ q^{16}\) \( + ( -2 - \beta_{1} + \beta_{2} ) q^{17} \) \( + ( 2 \beta_{1} + \beta_{2} ) q^{18} \) \( + ( 1 - 5 \beta_{1} + 3 \beta_{2} ) q^{19} \) \( + ( -3 + \beta_{1} - \beta_{2} ) q^{20} \) \( + ( 2 \beta_{1} - 3 \beta_{2} ) q^{21} \) \( + ( -4 - \beta_{1} ) q^{22} \) \( + ( -4 + \beta_{1} - 2 \beta_{2} ) q^{23} \) \( + ( -1 - \beta_{1} ) q^{24} \) \( + ( 5 - 5 \beta_{1} + 4 \beta_{2} ) q^{25} \) \( + ( -5 + \beta_{1} - \beta_{2} ) q^{26} \) \( + ( -2 + \beta_{1} - 4 \beta_{2} ) q^{27} \) \( + ( -3 + \beta_{1} + \beta_{2} ) q^{28} \) \( + ( -7 + \beta_{1} + 2 \beta_{2} ) q^{29} \) \( + ( 2 + 2 \beta_{1} + \beta_{2} ) q^{30} \) \( + ( -1 + 3 \beta_{1} + 2 \beta_{2} ) q^{31} \) \(+ q^{32}\) \( + ( 6 + 5 \beta_{1} + \beta_{2} ) q^{33} \) \( + ( -2 - \beta_{1} + \beta_{2} ) q^{34} \) \( + ( 10 - 7 \beta_{1} + 2 \beta_{2} ) q^{35} \) \( + ( 2 \beta_{1} + \beta_{2} ) q^{36} \) \( + ( -6 + 2 \beta_{1} - 2 \beta_{2} ) q^{37} \) \( + ( 1 - 5 \beta_{1} + 3 \beta_{2} ) q^{38} \) \( + ( 4 + 4 \beta_{1} + \beta_{2} ) q^{39} \) \( + ( -3 + \beta_{1} - \beta_{2} ) q^{40} \) \( + ( -4 + 4 \beta_{1} - 7 \beta_{2} ) q^{41} \) \( + ( 2 \beta_{1} - 3 \beta_{2} ) q^{42} \) \( + ( -3 + 2 \beta_{1} - 7 \beta_{2} ) q^{43} \) \( + ( -4 - \beta_{1} ) q^{44} \) \( + ( 2 - 7 \beta_{1} - \beta_{2} ) q^{45} \) \( + ( -4 + \beta_{1} - 2 \beta_{2} ) q^{46} \) \( + ( 2 - 5 \beta_{1} + 3 \beta_{2} ) q^{47} \) \( + ( -1 - \beta_{1} ) q^{48} \) \( + ( 7 - 5 \beta_{1} - 4 \beta_{2} ) q^{49} \) \( + ( 5 - 5 \beta_{1} + 4 \beta_{2} ) q^{50} \) \( + ( 3 + 3 \beta_{1} - \beta_{2} ) q^{51} \) \( + ( -5 + \beta_{1} - \beta_{2} ) q^{52} \) \( + ( 5 - 6 \beta_{1} + 5 \beta_{2} ) q^{53} \) \( + ( -2 + \beta_{1} - 4 \beta_{2} ) q^{54} \) \( + ( 11 - \beta_{1} + 4 \beta_{2} ) q^{55} \) \( + ( -3 + \beta_{1} + \beta_{2} ) q^{56} \) \( + ( 6 + 4 \beta_{1} - \beta_{2} ) q^{57} \) \( + ( -7 + \beta_{1} + 2 \beta_{2} ) q^{58} \) \( + ( 3 \beta_{1} - 4 \beta_{2} ) q^{59} \) \( + ( 2 + 2 \beta_{1} + \beta_{2} ) q^{60} \) \( + ( -7 + 4 \beta_{1} - 3 \beta_{2} ) q^{61} \) \( + ( -1 + 3 \beta_{1} + 2 \beta_{2} ) q^{62} \) \( + ( 8 - 5 \beta_{1} + \beta_{2} ) q^{63} \) \(+ q^{64}\) \( + ( 16 - 7 \beta_{1} + 6 \beta_{2} ) q^{65} \) \( + ( 6 + 5 \beta_{1} + \beta_{2} ) q^{66} \) \( + ( -9 + 6 \beta_{1} - 6 \beta_{2} ) q^{67} \) \( + ( -2 - \beta_{1} + \beta_{2} ) q^{68} \) \( + ( 4 + 3 \beta_{1} + 3 \beta_{2} ) q^{69} \) \( + ( 10 - 7 \beta_{1} + 2 \beta_{2} ) q^{70} \) \( + ( 2 - 6 \beta_{1} + 7 \beta_{2} ) q^{71} \) \( + ( 2 \beta_{1} + \beta_{2} ) q^{72} \) \( + ( 5 - 6 \beta_{1} + 7 \beta_{2} ) q^{73} \) \( + ( -6 + 2 \beta_{1} - 2 \beta_{2} ) q^{74} \) \( + ( 1 - 3 \beta_{2} ) q^{75} \) \( + ( 1 - 5 \beta_{1} + 3 \beta_{2} ) q^{76} \) \( + ( 9 - \beta_{1} - 6 \beta_{2} ) q^{77} \) \( + ( 4 + 4 \beta_{1} + \beta_{2} ) q^{78} \) \( + ( -10 + 3 \beta_{1} - 7 \beta_{2} ) q^{79} \) \( + ( -3 + \beta_{1} - \beta_{2} ) q^{80} \) \( + ( 4 - 5 \beta_{1} + 4 \beta_{2} ) q^{81} \) \( + ( -4 + 4 \beta_{1} - 7 \beta_{2} ) q^{82} \) \( + ( -4 + 8 \beta_{1} - 4 \beta_{2} ) q^{83} \) \( + ( 2 \beta_{1} - 3 \beta_{2} ) q^{84} \) \( + ( 5 + \beta_{2} ) q^{85} \) \( + ( -3 + 2 \beta_{1} - 7 \beta_{2} ) q^{86} \) \( + ( 3 + 6 \beta_{1} - 5 \beta_{2} ) q^{87} \) \( + ( -4 - \beta_{1} ) q^{88} \) \( + ( -1 + 3 \beta_{1} + \beta_{2} ) q^{89} \) \( + ( 2 - 7 \beta_{1} - \beta_{2} ) q^{90} \) \( + ( 16 - 9 \beta_{1} ) q^{91} \) \( + ( -4 + \beta_{1} - 2 \beta_{2} ) q^{92} \) \( + ( -7 - 2 \beta_{1} - 7 \beta_{2} ) q^{93} \) \( + ( 2 - 5 \beta_{1} + 3 \beta_{2} ) q^{94} \) \( + ( -8 + 13 \beta_{1} - 4 \beta_{2} ) q^{95} \) \( + ( -1 - \beta_{1} ) q^{96} \) \( + ( 3 - 7 \beta_{1} + 3 \beta_{2} ) q^{97} \) \( + ( 7 - 5 \beta_{1} - 4 \beta_{2} ) q^{98} \) \( + ( -5 - 8 \beta_{1} - 7 \beta_{2} ) q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(3q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut 7q^{5} \) \(\mathstrut -\mathstrut 4q^{6} \) \(\mathstrut -\mathstrut 9q^{7} \) \(\mathstrut +\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(3q \) \(\mathstrut +\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut 7q^{5} \) \(\mathstrut -\mathstrut 4q^{6} \) \(\mathstrut -\mathstrut 9q^{7} \) \(\mathstrut +\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut -\mathstrut 7q^{10} \) \(\mathstrut -\mathstrut 13q^{11} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 13q^{13} \) \(\mathstrut -\mathstrut 9q^{14} \) \(\mathstrut +\mathstrut 7q^{15} \) \(\mathstrut +\mathstrut 3q^{16} \) \(\mathstrut -\mathstrut 8q^{17} \) \(\mathstrut +\mathstrut q^{18} \) \(\mathstrut -\mathstrut 5q^{19} \) \(\mathstrut -\mathstrut 7q^{20} \) \(\mathstrut +\mathstrut 5q^{21} \) \(\mathstrut -\mathstrut 13q^{22} \) \(\mathstrut -\mathstrut 9q^{23} \) \(\mathstrut -\mathstrut 4q^{24} \) \(\mathstrut +\mathstrut 6q^{25} \) \(\mathstrut -\mathstrut 13q^{26} \) \(\mathstrut -\mathstrut q^{27} \) \(\mathstrut -\mathstrut 9q^{28} \) \(\mathstrut -\mathstrut 22q^{29} \) \(\mathstrut +\mathstrut 7q^{30} \) \(\mathstrut -\mathstrut 2q^{31} \) \(\mathstrut +\mathstrut 3q^{32} \) \(\mathstrut +\mathstrut 22q^{33} \) \(\mathstrut -\mathstrut 8q^{34} \) \(\mathstrut +\mathstrut 21q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 14q^{37} \) \(\mathstrut -\mathstrut 5q^{38} \) \(\mathstrut +\mathstrut 15q^{39} \) \(\mathstrut -\mathstrut 7q^{40} \) \(\mathstrut -\mathstrut q^{41} \) \(\mathstrut +\mathstrut 5q^{42} \) \(\mathstrut -\mathstrut 13q^{44} \) \(\mathstrut -\mathstrut 9q^{46} \) \(\mathstrut -\mathstrut 2q^{47} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut +\mathstrut 20q^{49} \) \(\mathstrut +\mathstrut 6q^{50} \) \(\mathstrut +\mathstrut 13q^{51} \) \(\mathstrut -\mathstrut 13q^{52} \) \(\mathstrut +\mathstrut 4q^{53} \) \(\mathstrut -\mathstrut q^{54} \) \(\mathstrut +\mathstrut 28q^{55} \) \(\mathstrut -\mathstrut 9q^{56} \) \(\mathstrut +\mathstrut 23q^{57} \) \(\mathstrut -\mathstrut 22q^{58} \) \(\mathstrut +\mathstrut 7q^{59} \) \(\mathstrut +\mathstrut 7q^{60} \) \(\mathstrut -\mathstrut 14q^{61} \) \(\mathstrut -\mathstrut 2q^{62} \) \(\mathstrut +\mathstrut 18q^{63} \) \(\mathstrut +\mathstrut 3q^{64} \) \(\mathstrut +\mathstrut 35q^{65} \) \(\mathstrut +\mathstrut 22q^{66} \) \(\mathstrut -\mathstrut 15q^{67} \) \(\mathstrut -\mathstrut 8q^{68} \) \(\mathstrut +\mathstrut 12q^{69} \) \(\mathstrut +\mathstrut 21q^{70} \) \(\mathstrut -\mathstrut 7q^{71} \) \(\mathstrut +\mathstrut q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut -\mathstrut 14q^{74} \) \(\mathstrut +\mathstrut 6q^{75} \) \(\mathstrut -\mathstrut 5q^{76} \) \(\mathstrut +\mathstrut 32q^{77} \) \(\mathstrut +\mathstrut 15q^{78} \) \(\mathstrut -\mathstrut 20q^{79} \) \(\mathstrut -\mathstrut 7q^{80} \) \(\mathstrut +\mathstrut 3q^{81} \) \(\mathstrut -\mathstrut q^{82} \) \(\mathstrut +\mathstrut 5q^{84} \) \(\mathstrut +\mathstrut 14q^{85} \) \(\mathstrut +\mathstrut 20q^{87} \) \(\mathstrut -\mathstrut 13q^{88} \) \(\mathstrut -\mathstrut q^{89} \) \(\mathstrut +\mathstrut 39q^{91} \) \(\mathstrut -\mathstrut 9q^{92} \) \(\mathstrut -\mathstrut 16q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 7q^{95} \) \(\mathstrut -\mathstrut 4q^{96} \) \(\mathstrut -\mathstrut q^{97} \) \(\mathstrut +\mathstrut 20q^{98} \) \(\mathstrut -\mathstrut 16q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 2 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2}\mathstrut +\mathstrut \) \(2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
1.00000 −2.80194 1.00000 −2.44504 −2.80194 0.0489173 1.00000 4.85086 −2.44504
1.2 1.00000 −1.44504 1.00000 −0.753020 −1.44504 −4.35690 1.00000 −0.911854 −0.753020
1.3 1.00000 0.246980 1.00000 −3.80194 0.246980 −4.69202 1.00000 −2.93900 −3.80194
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3011\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3}^{3} \) \(\mathstrut +\mathstrut 4 T_{3}^{2} \) \(\mathstrut +\mathstrut 3 T_{3} \) \(\mathstrut -\mathstrut 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6022))\).