Properties

Label 6019.2.a.a
Level 6019
Weight 2
Character orbit 6019.a
Self dual Yes
Analytic conductor 48.062
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6019 = 13 \cdot 463 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6019.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.0619569766\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 3q^{5} \) \(\mathstrut -\mathstrut 3q^{7} \) \(\mathstrut -\mathstrut 3q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut -\mathstrut 2q^{4} \) \(\mathstrut +\mathstrut 3q^{5} \) \(\mathstrut -\mathstrut 3q^{7} \) \(\mathstrut -\mathstrut 3q^{9} \) \(\mathstrut -\mathstrut q^{11} \) \(\mathstrut +\mathstrut q^{13} \) \(\mathstrut +\mathstrut 4q^{16} \) \(\mathstrut +\mathstrut 2q^{17} \) \(\mathstrut -\mathstrut q^{19} \) \(\mathstrut -\mathstrut 6q^{20} \) \(\mathstrut +\mathstrut 2q^{23} \) \(\mathstrut +\mathstrut 4q^{25} \) \(\mathstrut +\mathstrut 6q^{28} \) \(\mathstrut +\mathstrut 5q^{29} \) \(\mathstrut +\mathstrut 4q^{31} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut 6q^{36} \) \(\mathstrut -\mathstrut 9q^{37} \) \(\mathstrut +\mathstrut 2q^{41} \) \(\mathstrut -\mathstrut 4q^{43} \) \(\mathstrut +\mathstrut 2q^{44} \) \(\mathstrut -\mathstrut 9q^{45} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut -\mathstrut 2q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 3q^{55} \) \(\mathstrut +\mathstrut 10q^{59} \) \(\mathstrut -\mathstrut 5q^{61} \) \(\mathstrut +\mathstrut 9q^{63} \) \(\mathstrut -\mathstrut 8q^{64} \) \(\mathstrut +\mathstrut 3q^{65} \) \(\mathstrut +\mathstrut 12q^{67} \) \(\mathstrut -\mathstrut 4q^{68} \) \(\mathstrut -\mathstrut 7q^{71} \) \(\mathstrut -\mathstrut 6q^{73} \) \(\mathstrut +\mathstrut 2q^{76} \) \(\mathstrut +\mathstrut 3q^{77} \) \(\mathstrut +\mathstrut 5q^{79} \) \(\mathstrut +\mathstrut 12q^{80} \) \(\mathstrut +\mathstrut 9q^{81} \) \(\mathstrut -\mathstrut 4q^{83} \) \(\mathstrut +\mathstrut 6q^{85} \) \(\mathstrut -\mathstrut 8q^{89} \) \(\mathstrut -\mathstrut 3q^{91} \) \(\mathstrut -\mathstrut 4q^{92} \) \(\mathstrut -\mathstrut 3q^{95} \) \(\mathstrut -\mathstrut 2q^{97} \) \(\mathstrut +\mathstrut 3q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −2.00000 3.00000 0 −3.00000 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(13\) \(-1\)
\(463\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2} \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6019))\).