Properties

Label 6018.2.a.o
Level 6018
Weight 2
Character orbit 6018.a
Self dual Yes
Analytic conductor 48.054
Analytic rank 1
Dimension 4
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6018 = 2 \cdot 3 \cdot 17 \cdot 59 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6018.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.0539719364\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(+ q^{2}\) \(+ q^{3}\) \(+ q^{4}\) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{5} \) \(+ q^{6}\) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{7} \) \(+ q^{8}\) \(+ q^{9}\) \(+O(q^{10})\) \( q\) \(+ q^{2}\) \(+ q^{3}\) \(+ q^{4}\) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{5} \) \(+ q^{6}\) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{7} \) \(+ q^{8}\) \(+ q^{9}\) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{10} \) \( + ( -2 - \beta_{2} ) q^{11} \) \(+ q^{12}\) \( + ( -1 - 3 \beta_{3} ) q^{13} \) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{14} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{15} \) \(+ q^{16}\) \(+ q^{17}\) \(+ q^{18}\) \( + ( -3 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{19} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{20} \) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{21} \) \( + ( -2 - \beta_{2} ) q^{22} \) \( + ( -5 + \beta_{2} + 3 \beta_{3} ) q^{23} \) \(+ q^{24}\) \( + ( -2 + \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{25} \) \( + ( -1 - 3 \beta_{3} ) q^{26} \) \(+ q^{27}\) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{28} \) \( + ( 1 - 3 \beta_{1} - 5 \beta_{2} + \beta_{3} ) q^{29} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{30} \) \( + ( -5 + 5 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{31} \) \(+ q^{32}\) \( + ( -2 - \beta_{2} ) q^{33} \) \(+ q^{34}\) \( + ( -3 - 4 \beta_{2} + \beta_{3} ) q^{35} \) \(+ q^{36}\) \( + ( -3 - 7 \beta_{1} + 4 \beta_{3} ) q^{37} \) \( + ( -3 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{38} \) \( + ( -1 - 3 \beta_{3} ) q^{39} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{40} \) \( + ( -1 + 2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{41} \) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{42} \) \( + ( -3 - 3 \beta_{2} - \beta_{3} ) q^{43} \) \( + ( -2 - \beta_{2} ) q^{44} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{45} \) \( + ( -5 + \beta_{2} + 3 \beta_{3} ) q^{46} \) \( + ( -\beta_{2} - \beta_{3} ) q^{47} \) \(+ q^{48}\) \( + ( -1 - \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{49} \) \( + ( -2 + \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{50} \) \(+ q^{51}\) \( + ( -1 - 3 \beta_{3} ) q^{52} \) \( + ( -1 + 5 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{53} \) \(+ q^{54}\) \( + ( 3 - 4 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{55} \) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{56} \) \( + ( -3 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{57} \) \( + ( 1 - 3 \beta_{1} - 5 \beta_{2} + \beta_{3} ) q^{58} \) \(+ q^{59}\) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{60} \) \( + ( -2 + 2 \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{61} \) \( + ( -5 + 5 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{62} \) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{63} \) \(+ q^{64}\) \( + ( -2 - 4 \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{65} \) \( + ( -2 - \beta_{2} ) q^{66} \) \( + ( -4 + 3 \beta_{1} + 4 \beta_{2} - \beta_{3} ) q^{67} \) \(+ q^{68}\) \( + ( -5 + \beta_{2} + 3 \beta_{3} ) q^{69} \) \( + ( -3 - 4 \beta_{2} + \beta_{3} ) q^{70} \) \( + ( 2 + 2 \beta_{1} + 5 \beta_{2} ) q^{71} \) \(+ q^{72}\) \( + ( -3 - 2 \beta_{1} - \beta_{2} ) q^{73} \) \( + ( -3 - 7 \beta_{1} + 4 \beta_{3} ) q^{74} \) \( + ( -2 + \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{75} \) \( + ( -3 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{76} \) \( + ( -3 + 4 \beta_{1} - 3 \beta_{2} + 4 \beta_{3} ) q^{77} \) \( + ( -1 - 3 \beta_{3} ) q^{78} \) \( + ( 7 + 2 \beta_{1} - 4 \beta_{3} ) q^{79} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{80} \) \(+ q^{81}\) \( + ( -1 + 2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{82} \) \( + ( -3 - 5 \beta_{1} + 6 \beta_{2} + 6 \beta_{3} ) q^{83} \) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{84} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{85} \) \( + ( -3 - 3 \beta_{2} - \beta_{3} ) q^{86} \) \( + ( 1 - 3 \beta_{1} - 5 \beta_{2} + \beta_{3} ) q^{87} \) \( + ( -2 - \beta_{2} ) q^{88} \) \( + ( -5 + \beta_{1} + 4 \beta_{2} + 7 \beta_{3} ) q^{89} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{90} \) \( + ( 3 + \beta_{1} + 2 \beta_{2} + 4 \beta_{3} ) q^{91} \) \( + ( -5 + \beta_{2} + 3 \beta_{3} ) q^{92} \) \( + ( -5 + 5 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{93} \) \( + ( -\beta_{2} - \beta_{3} ) q^{94} \) \( + ( 5 - 7 \beta_{1} - 5 \beta_{3} ) q^{95} \) \(+ q^{96}\) \( + ( 1 + 6 \beta_{1} - 2 \beta_{2} - 11 \beta_{3} ) q^{97} \) \( + ( -1 - \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{98} \) \( + ( -2 - \beta_{2} ) q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{4} \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut +\mathstrut 4q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 4q^{8} \) \(\mathstrut +\mathstrut 4q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{4} \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut +\mathstrut 4q^{6} \) \(\mathstrut -\mathstrut q^{7} \) \(\mathstrut +\mathstrut 4q^{8} \) \(\mathstrut +\mathstrut 4q^{9} \) \(\mathstrut -\mathstrut q^{10} \) \(\mathstrut -\mathstrut 10q^{11} \) \(\mathstrut +\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 10q^{13} \) \(\mathstrut -\mathstrut q^{14} \) \(\mathstrut -\mathstrut q^{15} \) \(\mathstrut +\mathstrut 4q^{16} \) \(\mathstrut +\mathstrut 4q^{17} \) \(\mathstrut +\mathstrut 4q^{18} \) \(\mathstrut -\mathstrut 14q^{19} \) \(\mathstrut -\mathstrut q^{20} \) \(\mathstrut -\mathstrut q^{21} \) \(\mathstrut -\mathstrut 10q^{22} \) \(\mathstrut -\mathstrut 12q^{23} \) \(\mathstrut +\mathstrut 4q^{24} \) \(\mathstrut -\mathstrut 3q^{25} \) \(\mathstrut -\mathstrut 10q^{26} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut q^{28} \) \(\mathstrut -\mathstrut 7q^{29} \) \(\mathstrut -\mathstrut q^{30} \) \(\mathstrut -\mathstrut 13q^{31} \) \(\mathstrut +\mathstrut 4q^{32} \) \(\mathstrut -\mathstrut 10q^{33} \) \(\mathstrut +\mathstrut 4q^{34} \) \(\mathstrut -\mathstrut 18q^{35} \) \(\mathstrut +\mathstrut 4q^{36} \) \(\mathstrut -\mathstrut 11q^{37} \) \(\mathstrut -\mathstrut 14q^{38} \) \(\mathstrut -\mathstrut 10q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 6q^{41} \) \(\mathstrut -\mathstrut q^{42} \) \(\mathstrut -\mathstrut 20q^{43} \) \(\mathstrut -\mathstrut 10q^{44} \) \(\mathstrut -\mathstrut q^{45} \) \(\mathstrut -\mathstrut 12q^{46} \) \(\mathstrut -\mathstrut 4q^{47} \) \(\mathstrut +\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut q^{49} \) \(\mathstrut -\mathstrut 3q^{50} \) \(\mathstrut +\mathstrut 4q^{51} \) \(\mathstrut -\mathstrut 10q^{52} \) \(\mathstrut -\mathstrut 5q^{53} \) \(\mathstrut +\mathstrut 4q^{54} \) \(\mathstrut +\mathstrut 4q^{55} \) \(\mathstrut -\mathstrut q^{56} \) \(\mathstrut -\mathstrut 14q^{57} \) \(\mathstrut -\mathstrut 7q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut q^{60} \) \(\mathstrut +\mathstrut 2q^{61} \) \(\mathstrut -\mathstrut 13q^{62} \) \(\mathstrut -\mathstrut q^{63} \) \(\mathstrut +\mathstrut 4q^{64} \) \(\mathstrut -\mathstrut 20q^{65} \) \(\mathstrut -\mathstrut 10q^{66} \) \(\mathstrut -\mathstrut 7q^{67} \) \(\mathstrut +\mathstrut 4q^{68} \) \(\mathstrut -\mathstrut 12q^{69} \) \(\mathstrut -\mathstrut 18q^{70} \) \(\mathstrut +\mathstrut 20q^{71} \) \(\mathstrut +\mathstrut 4q^{72} \) \(\mathstrut -\mathstrut 16q^{73} \) \(\mathstrut -\mathstrut 11q^{74} \) \(\mathstrut -\mathstrut 3q^{75} \) \(\mathstrut -\mathstrut 14q^{76} \) \(\mathstrut -\mathstrut 6q^{77} \) \(\mathstrut -\mathstrut 10q^{78} \) \(\mathstrut +\mathstrut 22q^{79} \) \(\mathstrut -\mathstrut q^{80} \) \(\mathstrut +\mathstrut 4q^{81} \) \(\mathstrut -\mathstrut 6q^{82} \) \(\mathstrut +\mathstrut 7q^{83} \) \(\mathstrut -\mathstrut q^{84} \) \(\mathstrut -\mathstrut q^{85} \) \(\mathstrut -\mathstrut 20q^{86} \) \(\mathstrut -\mathstrut 7q^{87} \) \(\mathstrut -\mathstrut 10q^{88} \) \(\mathstrut +\mathstrut 3q^{89} \) \(\mathstrut -\mathstrut q^{90} \) \(\mathstrut +\mathstrut 25q^{91} \) \(\mathstrut -\mathstrut 12q^{92} \) \(\mathstrut -\mathstrut 13q^{93} \) \(\mathstrut -\mathstrut 4q^{94} \) \(\mathstrut +\mathstrut 3q^{95} \) \(\mathstrut +\mathstrut 4q^{96} \) \(\mathstrut -\mathstrut 16q^{97} \) \(\mathstrut -\mathstrut q^{98} \) \(\mathstrut -\mathstrut 10q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4}\mathstrut -\mathstrut \) \(x^{3}\mathstrut -\mathstrut \) \(3\) \(x^{2}\mathstrut +\mathstrut \) \(x\mathstrut +\mathstrut \) \(1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 1 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - \nu^{2} - 2 \nu + 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2}\mathstrut +\mathstrut \) \(\beta_{1}\mathstrut +\mathstrut \) \(1\)
\(\nu^{3}\)\(=\)\(\beta_{3}\mathstrut +\mathstrut \) \(\beta_{2}\mathstrut +\mathstrut \) \(3\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.35567
0.737640
−0.477260
2.09529
1.00000 1.00000 1.00000 −2.97371 1.00000 4.16724 1.00000 1.00000 −2.97371
1.2 1.00000 1.00000 1.00000 −0.880394 1.00000 −1.31313 1.00000 1.00000 −0.880394
1.3 1.00000 1.00000 1.00000 0.140774 1.00000 −1.43574 1.00000 1.00000 0.140774
1.4 1.00000 1.00000 1.00000 2.71333 1.00000 −2.41837 1.00000 1.00000 2.71333
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(17\) \(-1\)
\(59\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6018))\):

\(T_{5}^{4} \) \(\mathstrut +\mathstrut T_{5}^{3} \) \(\mathstrut -\mathstrut 8 T_{5}^{2} \) \(\mathstrut -\mathstrut 6 T_{5} \) \(\mathstrut +\mathstrut 1 \)
\(T_{7}^{4} \) \(\mathstrut +\mathstrut T_{7}^{3} \) \(\mathstrut -\mathstrut 13 T_{7}^{2} \) \(\mathstrut -\mathstrut 31 T_{7} \) \(\mathstrut -\mathstrut 19 \)