Properties

Label 6012.2.y
Level $6012$
Weight $2$
Character orbit 6012.y
Rep. character $\chi_{6012}(25,\cdot)$
Character field $\Q(\zeta_{249})$
Dimension $27552$
Sturm bound $2016$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 6012 = 2^{2} \cdot 3^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6012.y (of order \(249\) and degree \(164\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1503 \)
Character field: \(\Q(\zeta_{249})\)
Sturm bound: \(2016\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6012, [\chi])\).

Total New Old
Modular forms 166296 27552 138744
Cusp forms 164328 27552 136776
Eisenstein series 1968 0 1968

Decomposition of \(S_{2}^{\mathrm{new}}(6012, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6012, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6012, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(1503, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3006, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database