Properties

Label 6012.2.x
Level $6012$
Weight $2$
Character orbit 6012.x
Rep. character $\chi_{6012}(55,\cdot)$
Character field $\Q(\zeta_{166})$
Dimension $34276$
Sturm bound $2016$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 6012 = 2^{2} \cdot 3^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6012.x (of order \(166\) and degree \(82\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 668 \)
Character field: \(\Q(\zeta_{166})\)
Sturm bound: \(2016\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6012, [\chi])\).

Total New Old
Modular forms 83312 34604 48708
Cusp forms 82000 34276 47724
Eisenstein series 1312 328 984

Decomposition of \(S_{2}^{\mathrm{new}}(6012, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6012, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6012, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(668, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2004, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database