Properties

Label 6012.2.i
Level $6012$
Weight $2$
Character orbit 6012.i
Rep. character $\chi_{6012}(2005,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $332$
Sturm bound $2016$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 6012 = 2^{2} \cdot 3^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6012.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(2016\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6012, [\chi])\).

Total New Old
Modular forms 2028 332 1696
Cusp forms 2004 332 1672
Eisenstein series 24 0 24

Decomposition of \(S_{2}^{\mathrm{new}}(6012, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6012, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6012, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1503, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3006, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database