Properties

Label 6012.2.h
Level $6012$
Weight $2$
Character orbit 6012.h
Rep. character $\chi_{6012}(3005,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $1$
Sturm bound $2016$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 6012 = 2^{2} \cdot 3^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6012.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 501 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(2016\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6012, [\chi])\).

Total New Old
Modular forms 1020 56 964
Cusp forms 996 56 940
Eisenstein series 24 0 24

Trace form

\( 56q + O(q^{10}) \) \( 56q + 8q^{19} + 64q^{25} - 8q^{31} + 56q^{49} - 8q^{61} + 32q^{85} - 48q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(6012, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
6012.2.h.a \(56\) \(48.006\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(6012, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6012, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(501, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1002, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1503, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2004, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3006, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database