Properties

Label 6012.2.c
Level $6012$
Weight $2$
Character orbit 6012.c
Rep. character $\chi_{6012}(2339,\cdot)$
Character field $\Q$
Dimension $332$
Sturm bound $2016$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 6012 = 2^{2} \cdot 3^{2} \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6012.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Sturm bound: \(2016\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6012, [\chi])\).

Total New Old
Modular forms 1016 332 684
Cusp forms 1000 332 668
Eisenstein series 16 0 16

Decomposition of \(S_{2}^{\mathrm{new}}(6012, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6012, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6012, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2004, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database