Properties

Label 6012.2.a.a.1.1
Level 6012
Weight 2
Character 6012.1
Self dual Yes
Analytic conductor 48.006
Analytic rank 0
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6012 = 2^{2} \cdot 3^{2} \cdot 167 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6012.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(48.0060616952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.30278\)
Character \(\chi\) = 6012.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+3.00000 q^{5}\) \(-0.302776 q^{7}\) \(+O(q^{10})\) \(q\)\(+3.00000 q^{5}\) \(-0.302776 q^{7}\) \(+2.69722 q^{13}\) \(-2.30278 q^{17}\) \(+2.00000 q^{19}\) \(+2.30278 q^{23}\) \(+4.00000 q^{25}\) \(-7.60555 q^{29}\) \(+6.60555 q^{31}\) \(-0.908327 q^{35}\) \(+0.394449 q^{37}\) \(+6.21110 q^{41}\) \(+9.60555 q^{43}\) \(-1.60555 q^{47}\) \(-6.90833 q^{49}\) \(+4.60555 q^{53}\) \(-7.81665 q^{59}\) \(+6.81665 q^{61}\) \(+8.09167 q^{65}\) \(+8.21110 q^{67}\) \(-3.90833 q^{71}\) \(-3.09167 q^{73}\) \(+6.39445 q^{79}\) \(+1.60555 q^{83}\) \(-6.90833 q^{85}\) \(+13.8167 q^{89}\) \(-0.816654 q^{91}\) \(+6.00000 q^{95}\) \(+4.51388 q^{97}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut +\mathstrut 6q^{5} \) \(\mathstrut +\mathstrut 3q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut +\mathstrut 6q^{5} \) \(\mathstrut +\mathstrut 3q^{7} \) \(\mathstrut +\mathstrut 9q^{13} \) \(\mathstrut -\mathstrut q^{17} \) \(\mathstrut +\mathstrut 4q^{19} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut +\mathstrut 8q^{25} \) \(\mathstrut -\mathstrut 8q^{29} \) \(\mathstrut +\mathstrut 6q^{31} \) \(\mathstrut +\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut 8q^{37} \) \(\mathstrut -\mathstrut 2q^{41} \) \(\mathstrut +\mathstrut 12q^{43} \) \(\mathstrut +\mathstrut 4q^{47} \) \(\mathstrut -\mathstrut 3q^{49} \) \(\mathstrut +\mathstrut 2q^{53} \) \(\mathstrut +\mathstrut 6q^{59} \) \(\mathstrut -\mathstrut 8q^{61} \) \(\mathstrut +\mathstrut 27q^{65} \) \(\mathstrut +\mathstrut 2q^{67} \) \(\mathstrut +\mathstrut 3q^{71} \) \(\mathstrut -\mathstrut 17q^{73} \) \(\mathstrut +\mathstrut 20q^{79} \) \(\mathstrut -\mathstrut 4q^{83} \) \(\mathstrut -\mathstrut 3q^{85} \) \(\mathstrut +\mathstrut 6q^{89} \) \(\mathstrut +\mathstrut 20q^{91} \) \(\mathstrut +\mathstrut 12q^{95} \) \(\mathstrut -\mathstrut 9q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) −0.302776 −0.114438 −0.0572192 0.998362i \(-0.518223\pi\)
−0.0572192 + 0.998362i \(0.518223\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 2.69722 0.748075 0.374038 0.927413i \(-0.377973\pi\)
0.374038 + 0.927413i \(0.377973\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.30278 −0.558505 −0.279253 0.960218i \(-0.590087\pi\)
−0.279253 + 0.960218i \(0.590087\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.30278 0.480162 0.240081 0.970753i \(-0.422826\pi\)
0.240081 + 0.970753i \(0.422826\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.60555 −1.41232 −0.706158 0.708055i \(-0.749573\pi\)
−0.706158 + 0.708055i \(0.749573\pi\)
\(30\) 0 0
\(31\) 6.60555 1.18639 0.593196 0.805058i \(-0.297866\pi\)
0.593196 + 0.805058i \(0.297866\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.908327 −0.153535
\(36\) 0 0
\(37\) 0.394449 0.0648470 0.0324235 0.999474i \(-0.489677\pi\)
0.0324235 + 0.999474i \(0.489677\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.21110 0.970011 0.485006 0.874511i \(-0.338818\pi\)
0.485006 + 0.874511i \(0.338818\pi\)
\(42\) 0 0
\(43\) 9.60555 1.46483 0.732416 0.680857i \(-0.238392\pi\)
0.732416 + 0.680857i \(0.238392\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.60555 −0.234194 −0.117097 0.993120i \(-0.537359\pi\)
−0.117097 + 0.993120i \(0.537359\pi\)
\(48\) 0 0
\(49\) −6.90833 −0.986904
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.60555 0.632621 0.316311 0.948656i \(-0.397556\pi\)
0.316311 + 0.948656i \(0.397556\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.81665 −1.01764 −0.508821 0.860872i \(-0.669918\pi\)
−0.508821 + 0.860872i \(0.669918\pi\)
\(60\) 0 0
\(61\) 6.81665 0.872783 0.436392 0.899757i \(-0.356256\pi\)
0.436392 + 0.899757i \(0.356256\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.09167 1.00365
\(66\) 0 0
\(67\) 8.21110 1.00315 0.501573 0.865115i \(-0.332755\pi\)
0.501573 + 0.865115i \(0.332755\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.90833 −0.463833 −0.231917 0.972736i \(-0.574500\pi\)
−0.231917 + 0.972736i \(0.574500\pi\)
\(72\) 0 0
\(73\) −3.09167 −0.361853 −0.180926 0.983497i \(-0.557910\pi\)
−0.180926 + 0.983497i \(0.557910\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.39445 0.719432 0.359716 0.933062i \(-0.382874\pi\)
0.359716 + 0.933062i \(0.382874\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.60555 0.176232 0.0881161 0.996110i \(-0.471915\pi\)
0.0881161 + 0.996110i \(0.471915\pi\)
\(84\) 0 0
\(85\) −6.90833 −0.749313
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.8167 1.46456 0.732281 0.681002i \(-0.238456\pi\)
0.732281 + 0.681002i \(0.238456\pi\)
\(90\) 0 0
\(91\) −0.816654 −0.0856086
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.00000 0.615587
\(96\) 0 0
\(97\) 4.51388 0.458315 0.229157 0.973389i \(-0.426403\pi\)
0.229157 + 0.973389i \(0.426403\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.8167 1.07630 0.538149 0.842850i \(-0.319124\pi\)
0.538149 + 0.842850i \(0.319124\pi\)
\(102\) 0 0
\(103\) −3.30278 −0.325432 −0.162716 0.986673i \(-0.552025\pi\)
−0.162716 + 0.986673i \(0.552025\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.60555 −0.735256 −0.367628 0.929973i \(-0.619830\pi\)
−0.367628 + 0.929973i \(0.619830\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.42221 −0.886366 −0.443183 0.896431i \(-0.646151\pi\)
−0.443183 + 0.896431i \(0.646151\pi\)
\(114\) 0 0
\(115\) 6.90833 0.644205
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.697224 0.0639145
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 14.2111 1.26103 0.630516 0.776176i \(-0.282843\pi\)
0.630516 + 0.776176i \(0.282843\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 20.0278 1.74983 0.874917 0.484274i \(-0.160916\pi\)
0.874917 + 0.484274i \(0.160916\pi\)
\(132\) 0 0
\(133\) −0.605551 −0.0525080
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.78890 0.238272 0.119136 0.992878i \(-0.461988\pi\)
0.119136 + 0.992878i \(0.461988\pi\)
\(138\) 0 0
\(139\) 5.90833 0.501138 0.250569 0.968099i \(-0.419382\pi\)
0.250569 + 0.968099i \(0.419382\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −22.8167 −1.89482
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.5139 −1.43479 −0.717396 0.696665i \(-0.754666\pi\)
−0.717396 + 0.696665i \(0.754666\pi\)
\(150\) 0 0
\(151\) 19.5139 1.58802 0.794008 0.607907i \(-0.207991\pi\)
0.794008 + 0.607907i \(0.207991\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19.8167 1.59171
\(156\) 0 0
\(157\) 0.816654 0.0651761 0.0325880 0.999469i \(-0.489625\pi\)
0.0325880 + 0.999469i \(0.489625\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.697224 −0.0549490
\(162\) 0 0
\(163\) −5.39445 −0.422526 −0.211263 0.977429i \(-0.567758\pi\)
−0.211263 + 0.977429i \(0.567758\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.00000 0.0773823
\(168\) 0 0
\(169\) −5.72498 −0.440383
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.78890 −0.440122 −0.220061 0.975486i \(-0.570626\pi\)
−0.220061 + 0.975486i \(0.570626\pi\)
\(174\) 0 0
\(175\) −1.21110 −0.0915507
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.908327 −0.0678915 −0.0339458 0.999424i \(-0.510807\pi\)
−0.0339458 + 0.999424i \(0.510807\pi\)
\(180\) 0 0
\(181\) −7.21110 −0.535997 −0.267999 0.963419i \(-0.586362\pi\)
−0.267999 + 0.963419i \(0.586362\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.18335 0.0870013
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.3028 0.817840 0.408920 0.912570i \(-0.365905\pi\)
0.408920 + 0.912570i \(0.365905\pi\)
\(192\) 0 0
\(193\) 5.90833 0.425291 0.212645 0.977129i \(-0.431792\pi\)
0.212645 + 0.977129i \(0.431792\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.69722 −0.263416 −0.131708 0.991289i \(-0.542046\pi\)
−0.131708 + 0.991289i \(0.542046\pi\)
\(198\) 0 0
\(199\) −10.6972 −0.758306 −0.379153 0.925334i \(-0.623785\pi\)
−0.379153 + 0.925334i \(0.623785\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.30278 0.161623
\(204\) 0 0
\(205\) 18.6333 1.30141
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 13.5139 0.930334 0.465167 0.885223i \(-0.345994\pi\)
0.465167 + 0.885223i \(0.345994\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 28.8167 1.96528
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.21110 −0.417804
\(222\) 0 0
\(223\) −0.513878 −0.0344118 −0.0172059 0.999852i \(-0.505477\pi\)
−0.0172059 + 0.999852i \(0.505477\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.18335 −0.0785414 −0.0392707 0.999229i \(-0.512503\pi\)
−0.0392707 + 0.999229i \(0.512503\pi\)
\(228\) 0 0
\(229\) 8.69722 0.574729 0.287364 0.957821i \(-0.407221\pi\)
0.287364 + 0.957821i \(0.407221\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.90833 −0.452580 −0.226290 0.974060i \(-0.572660\pi\)
−0.226290 + 0.974060i \(0.572660\pi\)
\(234\) 0 0
\(235\) −4.81665 −0.314204
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.0917 −0.717461 −0.358730 0.933441i \(-0.616790\pi\)
−0.358730 + 0.933441i \(0.616790\pi\)
\(240\) 0 0
\(241\) 2.69722 0.173743 0.0868717 0.996220i \(-0.472313\pi\)
0.0868717 + 0.996220i \(0.472313\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −20.7250 −1.32407
\(246\) 0 0
\(247\) 5.39445 0.343241
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.3944 0.656092 0.328046 0.944662i \(-0.393610\pi\)
0.328046 + 0.944662i \(0.393610\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −19.1194 −1.19264 −0.596319 0.802748i \(-0.703371\pi\)
−0.596319 + 0.802748i \(0.703371\pi\)
\(258\) 0 0
\(259\) −0.119429 −0.00742099
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.2111 −0.752969 −0.376484 0.926423i \(-0.622867\pi\)
−0.376484 + 0.926423i \(0.622867\pi\)
\(264\) 0 0
\(265\) 13.8167 0.848750
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.30278 −0.323316 −0.161658 0.986847i \(-0.551684\pi\)
−0.161658 + 0.986847i \(0.551684\pi\)
\(270\) 0 0
\(271\) 14.4222 0.876087 0.438043 0.898954i \(-0.355672\pi\)
0.438043 + 0.898954i \(0.355672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 25.5139 1.53298 0.766490 0.642256i \(-0.222001\pi\)
0.766490 + 0.642256i \(0.222001\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.4222 0.920012 0.460006 0.887916i \(-0.347847\pi\)
0.460006 + 0.887916i \(0.347847\pi\)
\(282\) 0 0
\(283\) −10.4222 −0.619536 −0.309768 0.950812i \(-0.600251\pi\)
−0.309768 + 0.950812i \(0.600251\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.88057 −0.111007
\(288\) 0 0
\(289\) −11.6972 −0.688072
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) −23.4500 −1.36531
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.21110 0.359197
\(300\) 0 0
\(301\) −2.90833 −0.167633
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 20.4500 1.17096
\(306\) 0 0
\(307\) 25.9361 1.48025 0.740125 0.672469i \(-0.234766\pi\)
0.740125 + 0.672469i \(0.234766\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.21110 −0.352199 −0.176100 0.984372i \(-0.556348\pi\)
−0.176100 + 0.984372i \(0.556348\pi\)
\(312\) 0 0
\(313\) 10.5139 0.594280 0.297140 0.954834i \(-0.403967\pi\)
0.297140 + 0.954834i \(0.403967\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −28.5416 −1.60306 −0.801529 0.597956i \(-0.795980\pi\)
−0.801529 + 0.597956i \(0.795980\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.60555 −0.256260
\(324\) 0 0
\(325\) 10.7889 0.598460
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.486122 0.0268008
\(330\) 0 0
\(331\) 9.18335 0.504762 0.252381 0.967628i \(-0.418786\pi\)
0.252381 + 0.967628i \(0.418786\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 24.6333 1.34586
\(336\) 0 0
\(337\) 27.6056 1.50377 0.751885 0.659294i \(-0.229145\pi\)
0.751885 + 0.659294i \(0.229145\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 4.21110 0.227378
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.9083 −1.17610 −0.588050 0.808824i \(-0.700104\pi\)
−0.588050 + 0.808824i \(0.700104\pi\)
\(348\) 0 0
\(349\) −36.4500 −1.95112 −0.975561 0.219729i \(-0.929483\pi\)
−0.975561 + 0.219729i \(0.929483\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.18335 0.222657 0.111329 0.993784i \(-0.464489\pi\)
0.111329 + 0.993784i \(0.464489\pi\)
\(354\) 0 0
\(355\) −11.7250 −0.622297
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.18335 −0.0624546 −0.0312273 0.999512i \(-0.509942\pi\)
−0.0312273 + 0.999512i \(0.509942\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.27502 −0.485477
\(366\) 0 0
\(367\) 18.8167 0.982221 0.491111 0.871097i \(-0.336591\pi\)
0.491111 + 0.871097i \(0.336591\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.39445 −0.0723962
\(372\) 0 0
\(373\) −16.4861 −0.853619 −0.426810 0.904342i \(-0.640363\pi\)
−0.426810 + 0.904342i \(0.640363\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.5139 −1.05652
\(378\) 0 0
\(379\) −0.0277564 −0.00142575 −0.000712875 1.00000i \(-0.500227\pi\)
−0.000712875 1.00000i \(0.500227\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 27.8444 1.42278 0.711391 0.702796i \(-0.248065\pi\)
0.711391 + 0.702796i \(0.248065\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.81665 0.244214 0.122107 0.992517i \(-0.461035\pi\)
0.122107 + 0.992517i \(0.461035\pi\)
\(390\) 0 0
\(391\) −5.30278 −0.268173
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 19.1833 0.965219
\(396\) 0 0
\(397\) 3.11943 0.156560 0.0782798 0.996931i \(-0.475057\pi\)
0.0782798 + 0.996931i \(0.475057\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.6972 1.08351 0.541754 0.840537i \(-0.317760\pi\)
0.541754 + 0.840537i \(0.317760\pi\)
\(402\) 0 0
\(403\) 17.8167 0.887511
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 19.0917 0.944022 0.472011 0.881593i \(-0.343528\pi\)
0.472011 + 0.881593i \(0.343528\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.36669 0.116457
\(414\) 0 0
\(415\) 4.81665 0.236440
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.2111 0.596551 0.298276 0.954480i \(-0.403589\pi\)
0.298276 + 0.954480i \(0.403589\pi\)
\(420\) 0 0
\(421\) 12.6056 0.614357 0.307178 0.951652i \(-0.400615\pi\)
0.307178 + 0.951652i \(0.400615\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.21110 −0.446804
\(426\) 0 0
\(427\) −2.06392 −0.0998799
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.0278 −0.820198 −0.410099 0.912041i \(-0.634506\pi\)
−0.410099 + 0.912041i \(0.634506\pi\)
\(432\) 0 0
\(433\) −29.3305 −1.40954 −0.704768 0.709438i \(-0.748949\pi\)
−0.704768 + 0.709438i \(0.748949\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.60555 0.220313
\(438\) 0 0
\(439\) −22.2111 −1.06008 −0.530039 0.847973i \(-0.677823\pi\)
−0.530039 + 0.847973i \(0.677823\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.275019 −0.0130666 −0.00653328 0.999979i \(-0.502080\pi\)
−0.00653328 + 0.999979i \(0.502080\pi\)
\(444\) 0 0
\(445\) 41.4500 1.96492
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.97224 −0.187462 −0.0937309 0.995598i \(-0.529879\pi\)
−0.0937309 + 0.995598i \(0.529879\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.44996 −0.114856
\(456\) 0 0
\(457\) 6.88057 0.321860 0.160930 0.986966i \(-0.448551\pi\)
0.160930 + 0.986966i \(0.448551\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.6972 1.01054 0.505270 0.862961i \(-0.331393\pi\)
0.505270 + 0.862961i \(0.331393\pi\)
\(462\) 0 0
\(463\) 1.78890 0.0831371 0.0415686 0.999136i \(-0.486765\pi\)
0.0415686 + 0.999136i \(0.486765\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.1194 0.607095 0.303547 0.952816i \(-0.401829\pi\)
0.303547 + 0.952816i \(0.401829\pi\)
\(468\) 0 0
\(469\) −2.48612 −0.114798
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 8.00000 0.367065
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.63331 −0.166010 −0.0830050 0.996549i \(-0.526452\pi\)
−0.0830050 + 0.996549i \(0.526452\pi\)
\(480\) 0 0
\(481\) 1.06392 0.0485104
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.5416 0.614894
\(486\) 0 0
\(487\) 30.8167 1.39644 0.698218 0.715885i \(-0.253977\pi\)
0.698218 + 0.715885i \(0.253977\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.633308 −0.0285808 −0.0142904 0.999898i \(-0.504549\pi\)
−0.0142904 + 0.999898i \(0.504549\pi\)
\(492\) 0 0
\(493\) 17.5139 0.788785
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.18335 0.0530803
\(498\) 0 0
\(499\) 0.669468 0.0299695 0.0149848 0.999888i \(-0.495230\pi\)
0.0149848 + 0.999888i \(0.495230\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.486122 0.0216751 0.0108376 0.999941i \(-0.496550\pi\)
0.0108376 + 0.999941i \(0.496550\pi\)
\(504\) 0 0
\(505\) 32.4500 1.44400
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −24.9083 −1.10404 −0.552021 0.833830i \(-0.686143\pi\)
−0.552021 + 0.833830i \(0.686143\pi\)
\(510\) 0 0
\(511\) 0.936083 0.0414099
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.90833 −0.436613
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 43.8167 1.91964 0.959821 0.280612i \(-0.0905375\pi\)
0.959821 + 0.280612i \(0.0905375\pi\)
\(522\) 0 0
\(523\) −8.81665 −0.385525 −0.192763 0.981245i \(-0.561745\pi\)
−0.192763 + 0.981245i \(0.561745\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.2111 −0.662606
\(528\) 0 0
\(529\) −17.6972 −0.769445
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.7527 0.725642
\(534\) 0 0
\(535\) −22.8167 −0.986450
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −35.6056 −1.53080 −0.765401 0.643554i \(-0.777459\pi\)
−0.765401 + 0.643554i \(0.777459\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −34.3583 −1.46905 −0.734527 0.678579i \(-0.762596\pi\)
−0.734527 + 0.678579i \(0.762596\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −15.2111 −0.648015
\(552\) 0 0
\(553\) −1.93608 −0.0823306
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.8167 −0.458316 −0.229158 0.973389i \(-0.573597\pi\)
−0.229158 + 0.973389i \(0.573597\pi\)
\(558\) 0 0
\(559\) 25.9083 1.09581
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23.5139 −0.990992 −0.495496 0.868610i \(-0.665014\pi\)
−0.495496 + 0.868610i \(0.665014\pi\)
\(564\) 0 0
\(565\) −28.2666 −1.18919
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.2111 −1.51805 −0.759024 0.651062i \(-0.774324\pi\)
−0.759024 + 0.651062i \(0.774324\pi\)
\(570\) 0 0
\(571\) −14.5416 −0.608548 −0.304274 0.952584i \(-0.598414\pi\)
−0.304274 + 0.952584i \(0.598414\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.21110 0.384130
\(576\) 0 0
\(577\) −24.5139 −1.02053 −0.510263 0.860018i \(-0.670452\pi\)
−0.510263 + 0.860018i \(0.670452\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.486122 −0.0201677
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 42.9083 1.77102 0.885508 0.464624i \(-0.153810\pi\)
0.885508 + 0.464624i \(0.153810\pi\)
\(588\) 0 0
\(589\) 13.2111 0.544354
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.3944 1.16602 0.583010 0.812465i \(-0.301875\pi\)
0.583010 + 0.812465i \(0.301875\pi\)
\(594\) 0 0
\(595\) 2.09167 0.0857502
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.0917 1.06608 0.533038 0.846091i \(-0.321050\pi\)
0.533038 + 0.846091i \(0.321050\pi\)
\(600\) 0 0
\(601\) 24.5416 1.00107 0.500537 0.865715i \(-0.333136\pi\)
0.500537 + 0.865715i \(0.333136\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −33.0000 −1.34164
\(606\) 0 0
\(607\) 13.7250 0.557080 0.278540 0.960425i \(-0.410150\pi\)
0.278540 + 0.960425i \(0.410150\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.33053 −0.175195
\(612\) 0 0
\(613\) −38.3305 −1.54816 −0.774078 0.633090i \(-0.781786\pi\)
−0.774078 + 0.633090i \(0.781786\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.4500 1.54794 0.773969 0.633224i \(-0.218269\pi\)
0.773969 + 0.633224i \(0.218269\pi\)
\(618\) 0 0
\(619\) 25.0278 1.00595 0.502975 0.864301i \(-0.332239\pi\)
0.502975 + 0.864301i \(0.332239\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.18335 −0.167602
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.908327 −0.0362174
\(630\) 0 0
\(631\) −33.9361 −1.35097 −0.675487 0.737372i \(-0.736067\pi\)
−0.675487 + 0.737372i \(0.736067\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 42.6333 1.69185
\(636\) 0 0
\(637\) −18.6333 −0.738279
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.3028 0.446433 0.223216 0.974769i \(-0.428344\pi\)
0.223216 + 0.974769i \(0.428344\pi\)
\(642\) 0 0
\(643\) −12.5139 −0.493499 −0.246750 0.969079i \(-0.579363\pi\)
−0.246750 + 0.969079i \(0.579363\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 35.9361 1.41279 0.706397 0.707816i \(-0.250320\pi\)
0.706397 + 0.707816i \(0.250320\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.1194 0.513403 0.256701 0.966491i \(-0.417364\pi\)
0.256701 + 0.966491i \(0.417364\pi\)
\(654\) 0 0
\(655\) 60.0833 2.34765
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.8167 0.771947 0.385974 0.922510i \(-0.373866\pi\)
0.385974 + 0.922510i \(0.373866\pi\)
\(660\) 0 0
\(661\) −38.1194 −1.48267 −0.741337 0.671133i \(-0.765808\pi\)
−0.741337 + 0.671133i \(0.765808\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.81665 −0.0704468
\(666\) 0 0
\(667\) −17.5139 −0.678140
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 41.6333 1.60485 0.802423 0.596756i \(-0.203544\pi\)
0.802423 + 0.596756i \(0.203544\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.8167 0.531017 0.265509 0.964108i \(-0.414460\pi\)
0.265509 + 0.964108i \(0.414460\pi\)
\(678\) 0 0
\(679\) −1.36669 −0.0524488
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 49.5416 1.89566 0.947829 0.318779i \(-0.103273\pi\)
0.947829 + 0.318779i \(0.103273\pi\)
\(684\) 0 0
\(685\) 8.36669 0.319675
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.4222 0.473248
\(690\) 0 0
\(691\) −42.4500 −1.61487 −0.807436 0.589955i \(-0.799146\pi\)
−0.807436 + 0.589955i \(0.799146\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.7250 0.672347
\(696\) 0 0
\(697\) −14.3028 −0.541756
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.02776 −0.303204 −0.151602 0.988442i \(-0.548443\pi\)
−0.151602 + 0.988442i \(0.548443\pi\)
\(702\) 0 0
\(703\) 0.788897 0.0297538
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.27502 −0.123170
\(708\) 0 0
\(709\) 50.1472 1.88332 0.941659 0.336570i \(-0.109267\pi\)
0.941659 + 0.336570i \(0.109267\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 15.2111 0.569660
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.8806 0.853301 0.426651 0.904417i \(-0.359693\pi\)
0.426651 + 0.904417i \(0.359693\pi\)
\(720\) 0 0
\(721\) 1.00000 0.0372419
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −30.4222 −1.12985
\(726\) 0 0
\(727\) 28.7250 1.06535 0.532675 0.846320i \(-0.321187\pi\)
0.532675 + 0.846320i \(0.321187\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −22.1194 −0.818117
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −3.93608 −0.144791 −0.0723956 0.997376i \(-0.523064\pi\)
−0.0723956 + 0.997376i \(0.523064\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −52.1194 −1.91208 −0.956038 0.293242i \(-0.905266\pi\)
−0.956038 + 0.293242i \(0.905266\pi\)
\(744\) 0 0
\(745\) −52.5416 −1.92498
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.30278 0.0841416
\(750\) 0 0
\(751\) −23.6056 −0.861379 −0.430689 0.902500i \(-0.641730\pi\)
−0.430689 + 0.902500i \(0.641730\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 58.5416 2.13055
\(756\) 0 0
\(757\) 22.7250 0.825953 0.412977 0.910742i \(-0.364489\pi\)
0.412977 + 0.910742i \(0.364489\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.69722 0.134024 0.0670121 0.997752i \(-0.478653\pi\)
0.0670121 + 0.997752i \(0.478653\pi\)
\(762\) 0 0
\(763\) −0.605551 −0.0219224
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21.0833 −0.761273
\(768\) 0 0
\(769\) −14.8167 −0.534302 −0.267151 0.963655i \(-0.586082\pi\)
−0.267151 + 0.963655i \(0.586082\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.6056 −0.381455 −0.190728 0.981643i \(-0.561085\pi\)
−0.190728 + 0.981643i \(0.561085\pi\)
\(774\) 0 0
\(775\) 26.4222 0.949114
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.4222 0.445072
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.44996 0.0874429
\(786\) 0 0
\(787\) 43.4500 1.54882 0.774412 0.632682i \(-0.218046\pi\)
0.774412 + 0.632682i \(0.218046\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.85281 0.101434
\(792\) 0 0
\(793\) 18.3860 0.652908
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −36.6333 −1.29762 −0.648809 0.760951i \(-0.724733\pi\)
−0.648809 + 0.760951i \(0.724733\pi\)
\(798\) 0 0
\(799\) 3.69722 0.130798
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −2.09167 −0.0737218
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.7250 −0.834126 −0.417063 0.908878i \(-0.636941\pi\)
−0.417063 + 0.908878i \(0.636941\pi\)
\(810\) 0 0
\(811\) −37.8444 −1.32890 −0.664448 0.747334i \(-0.731333\pi\)
−0.664448 + 0.747334i \(0.731333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.1833 −0.566878
\(816\) 0 0
\(817\) 19.2111 0.672111
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.7250 −0.513905 −0.256953 0.966424i \(-0.582718\pi\)
−0.256953 + 0.966424i \(0.582718\pi\)
\(822\) 0 0
\(823\) −21.3028 −0.742568 −0.371284 0.928519i \(-0.621082\pi\)
−0.371284 + 0.928519i \(0.621082\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.45837 −0.0507123 −0.0253562 0.999678i \(-0.508072\pi\)
−0.0253562 + 0.999678i \(0.508072\pi\)
\(828\) 0 0
\(829\) 37.8722 1.31535 0.657677 0.753300i \(-0.271539\pi\)
0.657677 + 0.753300i \(0.271539\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 15.9083 0.551191
\(834\) 0 0
\(835\) 3.00000 0.103819
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −40.3944 −1.39457 −0.697286 0.716793i \(-0.745609\pi\)
−0.697286 + 0.716793i \(0.745609\pi\)
\(840\) 0 0
\(841\) 28.8444 0.994635
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17.1749 −0.590836
\(846\) 0 0
\(847\) 3.33053 0.114438
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.908327 0.0311370
\(852\) 0 0
\(853\) 40.7250 1.39440 0.697198 0.716878i \(-0.254430\pi\)
0.697198 + 0.716878i \(0.254430\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.5416 −0.872486 −0.436243 0.899829i \(-0.643691\pi\)
−0.436243 + 0.899829i \(0.643691\pi\)
\(858\) 0 0
\(859\) −41.3944 −1.41236 −0.706180 0.708032i \(-0.749583\pi\)
−0.706180 + 0.708032i \(0.749583\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11.5139 0.391937 0.195968 0.980610i \(-0.437215\pi\)
0.195968 + 0.980610i \(0.437215\pi\)
\(864\) 0 0
\(865\) −17.3667 −0.590485
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 22.1472 0.750429
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.908327 0.0307071
\(876\) 0 0
\(877\) 19.5139 0.658937 0.329468 0.944167i \(-0.393130\pi\)
0.329468 + 0.944167i \(0.393130\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.7889 0.498251 0.249125 0.968471i \(-0.419857\pi\)
0.249125 + 0.968471i \(0.419857\pi\)
\(882\) 0 0
\(883\) −27.9361 −0.940124 −0.470062 0.882633i \(-0.655768\pi\)
−0.470062 + 0.882633i \(0.655768\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.8167 −0.363188 −0.181594 0.983374i \(-0.558126\pi\)
−0.181594 + 0.983374i \(0.558126\pi\)
\(888\) 0 0
\(889\) −4.30278 −0.144310
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.21110 −0.107455
\(894\) 0 0
\(895\) −2.72498 −0.0910861
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −50.2389 −1.67556
\(900\) 0 0
\(901\) −10.6056 −0.353322
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −21.6333 −0.719115
\(906\) 0 0
\(907\) −4.63331 −0.153846 −0.0769232 0.997037i \(-0.524510\pi\)
−0.0769232 + 0.997037i \(0.524510\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.18335 −0.237995 −0.118997 0.992895i \(-0.537968\pi\)
−0.118997 + 0.992895i \(0.537968\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.06392 −0.200248
\(918\) 0 0
\(919\) −0.0916731 −0.00302402 −0.00151201 0.999999i \(-0.500481\pi\)
−0.00151201 + 0.999999i \(0.500481\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −10.5416 −0.346982
\(924\) 0 0
\(925\) 1.57779 0.0518776
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15.4861 −0.508083 −0.254042 0.967193i \(-0.581760\pi\)
−0.254042 + 0.967193i \(0.581760\pi\)
\(930\) 0 0
\(931\) −13.8167 −0.452823
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −51.4500 −1.68080 −0.840398 0.541969i \(-0.817679\pi\)
−0.840398 + 0.541969i \(0.817679\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −59.2389 −1.93113 −0.965566 0.260159i \(-0.916225\pi\)
−0.965566 + 0.260159i \(0.916225\pi\)
\(942\) 0 0
\(943\) 14.3028 0.465762
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −14.0917 −0.457918 −0.228959 0.973436i \(-0.573532\pi\)
−0.228959 + 0.973436i \(0.573532\pi\)
\(948\) 0 0
\(949\) −8.33894 −0.270693
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −42.3583 −1.37212 −0.686060 0.727545i \(-0.740661\pi\)
−0.686060 + 0.727545i \(0.740661\pi\)
\(954\) 0 0
\(955\) 33.9083 1.09725
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.844410 −0.0272674
\(960\) 0 0
\(961\) 12.6333 0.407526
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 17.7250 0.570587
\(966\) 0 0
\(967\) −25.4861 −0.819578 −0.409789 0.912180i \(-0.634398\pi\)
−0.409789 + 0.912180i \(0.634398\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −49.4777 −1.58782 −0.793908 0.608038i \(-0.791957\pi\)
−0.793908 + 0.608038i \(0.791957\pi\)
\(972\) 0 0
\(973\) −1.78890 −0.0573494
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.5694 1.36192 0.680958 0.732323i \(-0.261564\pi\)
0.680958 + 0.732323i \(0.261564\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 31.2666 0.997250 0.498625 0.866818i \(-0.333838\pi\)
0.498625 + 0.866818i \(0.333838\pi\)
\(984\) 0 0
\(985\) −11.0917 −0.353410
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 22.1194 0.703357
\(990\) 0 0
\(991\) −19.6333 −0.623673 −0.311836 0.950136i \(-0.600944\pi\)
−0.311836 + 0.950136i \(0.600944\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −32.0917 −1.01737
\(996\) 0 0
\(997\) −24.7889 −0.785072 −0.392536 0.919737i \(-0.628402\pi\)
−0.392536 + 0.919737i \(0.628402\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))